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Earliest brain signatures of choice at iterated prisoner’s dilemma (iPD) gameplay are analyzed by electroencephalography (EEG). Three feedback components serve to indicate a 

player’s tendency to cooperate at the next round of the game. ‘Sucker’s payoff’ (worst outcome) elicits the fastest, transient indices, whereas (game-optimal) mutual cooperation entails 

the most delayed modulations.

Background

→ Neurobiological mechanisms of cooperation remain unknown, with crucial impact over organized social life. The iterated prisoner’s dilemma (iPD) is a formalism addressing 

cooperation[1]. Current insights emphasize a distinction between intuitive versus deliberative cooperation[2,3]. Yet it is unclear how is the distinction potentially supported over neural time.

→ EEG studies of the iPD have been primarily based on hyperscanning - dyadic measures from simultaneously interacting partners[4,5]. The possibility of measuring individuals’ EEG 

responses in order to predict cooperation during the game was however recently raised[6].

→ The FRN, P3 and delta-band lateralized frontal activity are key EEG indices of feedback processing at the iterated prisoner’s dilemma.

→ Earliest modulations per subsequent choice are contingent on current outcome: associations are found for FRN with ‘sucker’s payoff’, P3 and a late frontal potential with unilateral 

defection, and delta-band desynchronizations therein with mutual cooperation.

→ FRN is interpreted as a prediction error signal (reinforcement learning)[10] which might indicate expected reward or salience of a given ‘betrayal’ event

→ Frontoparietal networks are on the other hand involved in theory of mind[11], which might be involved in framing an analogous prediction error but in co-player terms[12]. 

→ Frontal EEG assymetries are indices of approach/avoidance behavior[13], while wakeful delta rhythms may be involved in homeostatic regulation[14]. Suppression is consistent with 

inhibition of defense mechanisms, possibly conditioned on the representation of conditions for further engagement.

→ 30 participants (16 female; mean age 22.3 y ± 2.9 SD) completed 200 rounds of the game at EEG sessions, against a 

probabilistic algorithm representing a confederate co-player, and were instructed to maximize earnings.

→ Spatial filtering techniques[7] were used to extract components related to feedback processing. Event-related potential 

and spectrotemporal analysis methods were further employed to identify which are modulated by co-player choice.

→ From these components, relevant waveform and spectrotemporal cluster feedback data were partitioned by player’s 

choice at the following round, analyzed with a minimum of 10 trials per partition.

→ Two-way RM ANOVA (player, co-player) were applied to feedback ERPs. Nonparametric analyses were applied to 

relevant contrasts in spectrotemporal data. Tests for differences by subsequent choice were performed (Wilcoxon rank sum 

or paired t-tests), depending on normality of underlying distributions assessed with the Shapiro-Wilk GOF test. 

What event-related potentials follow 
feedback presentation at the iPD?

How is each ERP component encoding for co-player choice? How do results relate to 
the feedback-related 
negativity (FRN)?

When and where are relevant components involved in player’s next choice?

Where/when in spectrotemporal activity may co-player choice be encoded?

Regardless of outcome type, feedback onset 

triggers a N1 to P3 to late potential ERP 

sequence, over occipital to parietal to left frontal 

scalp regions, over the 0-0.2, 0.2-1, and 0.5-3 s 

time intervals respectively.

P3/par. & LP/front. components partially overlap.

Spatial filtering applied to P3-

subspace (0.2-0.5 s), reveals a 

component maximizing the 

separation[7] between CC 

mutual coop. and CD ‘sucker’s 

payoff’. Topography may be 

associated with FRN[8]. Bands 

indicate ± 1 SEM.

(A) Waveforms for each of the feedback ERP components, with analysis 

time intervals shown in white.

(B) Summary of feedback component ERP magnitudes, averaged over 

their respective intervals. P3/Par. and LP/Front. both show an effect by 

co-player choice (p=0.002 and p=0.04 respectively). In addition, P3/Par. 

shows an effect of player choice (p=0.005), with no interaction.

**

** p < 0.001

Wavelet decomposition of LP/Front. ERP (evoked power) shows deactivation relative to 

baseline levels, in the delta range (1-4 Hz) post transient onset, for most outcomes.

Non-parametric analyses[9] of relevant contrasts, CC vs CD, and DC (‘one-sided 

defection’) vs DD (‘mutual defection’), show significant clusters of differential 

spectrotemporal activatio, between CC and CD, in low-delta (~1.4 Hz; p=0.002) and a 

high-delta (~3.2 Hz; p=0.034) regions, extending 0.6-2.5 s overall. Cluster boundaries 

shown.

A B C

(A) Given ‘sucker’s payoff’ (CD) outcomes, the decision to cooperate at the 

next round is accompanied by greater ERP activity, associated with the FRN 

component, in the 0.2-0.5 s interval (Z=2.85; p=0.004; N=18) from the current 

round outcome. Forthcoming cooperation indicated by less deactivation.

(B) At one-sided defection (DC) outcomes, such decision is similarly 

accompanied by increased ERP activity but from P3 and LP components, in 

the 0.2-1 s (Z=2.17; p=0.030; N=21) and 0.5-3 s (t(20)=2.28; p=0.033) intervals, 

respectively (corresponding topographies shown). Forthcoming cooperation 

is indicated by more activation.

(C) For mutual cooperation (CC) outcomes, differential modulations of outcome 

processing by subsequent round choice occur instead in slow-wave delta band activity, 

associated with the frontal, left-lateralized LP component (topography shown). Here, increased desynchronization relative to baseline occurs for a 3-4 Hz rhythm in the 1.6-2.5 s time interval, indicating forthcoming cooperation (Z=2.48; p=0.013; N=16).

(D) Total power wavelet scalograms for CC outcomes leading to a subsequent cooperation or non cooperation, whose difference leads to (C), with cluster also shown. Forthcoming choice not to cooperate is accompanied by less delta de-synchronization.
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The feedback stage of the iterated prisoner’s dilemma entails an early window where to gauge intent to cooperate. Involvement of predictive coding mechanisms[15] in triggering the 

ensuing decisional process, at distinct timescales and over different relevant networks, is suggested.
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