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Introduction Sameness and what it takes to compute and learn it

Despite the tremendous advances of Artificial Intelligence, a general theory of intelligent systems, connecting the
psychological, neuroscientific and computational levels is lacking. Artificial Neural Networks (ANN) are good starting points to
build the theory. Although nowadays most ANN models are said to be essentially unrelated to the Brain Networks, they
embody several principles that most Neuroscientists would agree are central to the Nervous System working.
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These features are massive parallelism, the storage of information superposed in a distributed set of synapses, that cells _ _ _ . ' o(t) - 1,0

detect abstract features in a hierarchical fashion and that learning occurs by changing these synapses to reduce some T(t)= Desired output.

measure of cost or error. Moreover, ANN are increasingly used to model Neuroscience data, with cells within the model that Input Activity TO=1 if H)=I(t-1) and |
share several response properties of real neurons. The difficulties these models find when dealing with cognitive problems State(t)=S(t)=ac(t)=ay(t-1) S?\:‘t‘;ex T(t)=0 otherwise. s
can point towards problems in the shared theoretical commitments of Neuroscience and ANN. In order to follow this path, we

propose to analyze the generalization of learning in simple but challenging problems. 1) 12) 13) | MpeN@) MPN@) | oN@)  eN()

We have previously proposed to concentrate on learning sameness, as we have shown that this is difficult for a SRN. Here we The network in B) cannot compute temporal
present the results of trying to use a Long-Short Term Memory Network to learn sameness. We show that the LSTM although equivalence. A) Markers indicate the different
much more efficient to learn partial examples of sameness fails to generalize to a proportion of the examples. This suggests combinations of contex (C(t+1)) in response to input

that LSTM and SRN share a core set of features that make generalization of sameness problematic. By analyzing where the I3 Hn PlEnE S cvery ST SN gf (l5zr0) EIe
context colored according to the desired output.

two models fail, we arrive at a proposal of what makes sameness hard to learn and generalize in recurrent neural networks. Mixed=hidden unit does not distinguish the two
possible inputs. The star and the pentagon mark
distinguishable non linearly separable cases. C)
Minimal SRN that can achieve the task.

General aspects of sameness Methods

Using Tensorflow with the Keras backend, | trained several LSTM and SRN models to learn 10-dimensional sameness.
Each network had 30 hidden units, and 1 sigmoid output unit.

Networks were trained using the Adam optimizer, and we settled for a learning rate of 1le-3 (others led to instability or stalling).

Batch size was 128.

3 types of training sets: random sampling from the vectors, random sampling with 10 % probability of positives; random sampling wiht
50 % probability

Training set sizes of 26214 (2.5 % of all cases), 104857 (10 %), 1048576 (100 %).

Measured the training set error and accuracy, another set of pairs as validation set during training and evaluation in the whole set. We
measuredd the accuracy for all positive cases (‘'all ones').

For general n-dimensional vectors, with k possible values, there are k" vectors and k2N pairs of vectors. For binary vectors k=2, a

small size vector of dimension there are 2290 ~ 1.6 x 1000 pairs. Even presenting a pair per femtosecond would take much more
than the age of the universe to experience them all. Another complication is that the fraction of pairs for which a positive answer
is required decreases with size. In effect there are only k" pairs out of k?", ie the fraction of pairs is k™ . Thus bigger sizes imply
less frequent pairs of vectors requiring a positive answetr.

As can be seen, there are nevertheless possible implementations of sameness in neural networks.

The question is whether an ANN can learn it from (much less data).

| will use accuracy but witha a caveat: For 10 dimensions there are 1024 possible binary vectors and 1048576 pairs.A network
outputing O for all examples would have an accuracy of 0.99902 and a mean absolute error of 9.8e-4.

Simple Recurrent Networks Long Short Term Memory Networks

SRN. Training set:26214 examples SRN. Training set:104857 examples SRN. Training set:1048576 examples LSTM. Training set:26214 examples LSTM. Training set:104857 examples LSTM. Training set:1048576 examples
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Number of false positives: 167772 Number of false positives: 262144 Number of false positives: 209715
Number of false negatives: 707 Number of false negatives: 512 Number of false negatives: 205

Number of false positives: 1783 Number of false positives: 325 Number of false positives: 2097
Number of false negatives: 839 Number of false negatives: 7 Number of false negatives: 205

SRN. Training set:26214 examples SRN. Training set:104857 examples SRN. Training set:1048576 examples LSTM. Training set:26214 examples LSTM. Training set:104857 examples LSTM. Training set:1048576 examples
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Number of false positives: 2412 Number of false positives:31457 Number of false positives: 52429
Number of false negatives: 205 Number of false negatives: 307 Number of false negatives: 205

Number of false positives: 553 Number of false positives: 94 Number of false positives: 25
Number of false negatives:0 Number of false negatives:0 Number of false negatives: 0O

SRN. Training set:26214 examples SRN. Training set:104857 examples SRN. Training set:1048576 examples LSTM. Training set:26214 examples LSTM. Training set:104857 examples LSTM. Training set:1048576 examples +1
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Number of false positives: 209715 Number of false positives: 209715 Number of false positives: 62915 Number of false positives: 1363 Number of false positives: 262 Number of false positives: 63
Number of false negatives: 0 Number of false negatives: 0 Number of false negatives:0 Number of false negatives:0 Number of false negatives: 0 Number of false negatives: 0

Summary of the Training and Testing Results Discussion and Conclusions

Fraction Sameness is hard to learn for the usual recurrent ANN models, specially when the training set is randomly
Training of Complete set sampled from the set of possible input vectors.
Type pairs positives | Training accuracy Test Accuracy |All ones accuracy accuracy Sameness-computing networks exist that can be desgined by hand and compute sameness with a high degree of
0.1

0.999988 (1e-6) [0.99996 (5e-5) 1.000000 (<1e-6) 0.999976 (3e-6) precission. | | . | |
0.999993 (<1e-6) [0.99997 (2e-5) 1.000000 (<1e-6) Yet, for a toy problem of 10-dim binary vectors, the equivalent of at least 5 times the number of total pairs

1.000000 (<1e-6) |0.99988 (7e-5) 1.000000 (<1e-6) (>1e§) i.s needed.to Frain a LSTM to a high Ievell of accuracy. Inc;rea_sing the proplortion of positive cases increases
the likelihood of finding a network that ihas a high accuracy. This high accuracy is not perfect though. There are
1.000000 (<1e-6) |0.99989 (2e-5) 1.000000 (<1e-6) some false positives and false negatives. LSTMs are far superior than SRNs. This cannot be attributed to gradient
0.99987(5e-5) 0.99957 (6e-5) 0.993 (0.004) explosion or extinction problems (given they are two-step dependencies).
1.000000 (<1e-6) [0.99969 (9e-5) 1.000000 (<1e-6) Given that LSTM units are more complex, including the possibility to learn to store a value, this might be
1.000000 (<1e-6) |0.9992 (0.0003) [1.000000 (<1e-6) 0.9987 (0.0002) important to compute equivalence through time. In a sense, LSTMs have memory capacities similar to what
0.99903 (4e-5) 0.99481 (0.0002) |O. : 0.9983 (0.0001) authors like Gallistel & King (2009) postulate for neurons.
0.997 (0.003) 0.997 (0.002) 0.998 (0.001) We need to analyze these cases in more detail to understand the differences from a detailed theoretical
perspectives
0.98 (0.02) 0.98 (0.03) . . 0.9977 (0.0004) In particular we want to understa_nd whether t_hese more powerful units embody a form of innate knowledge that
0.95 (0.02) 0.95 (0.02) (0. 0.97 (0.01) can be concelyed as a meta-ru!e innate .cap.aaty.. | |
The computation of sameness is pervasive in humans and can be taught to animals, even bees. Given the
0.94(0.09) 0.94(0.08) B 0.95(0.07) difficulties in training even small sets, there are few open possibilities; that animals (including humans) just
0.94 (0.09) 0.97(0.04) 1.000000 (<1e-6) 0.94 (0.09) compute an approximate sameness much easier to learn, but prone to error; that there are other unknown
0.84 (0.01) 0.904 (0.007) 0.31(0.01) 0.84 (0.01) learning mechanisms that are more powerful and require less experience; that sameness is part of our innate
0.9(0.1) 0.9(0.1) 1.000000 (<1e-6) 0.8 (0.3) endowment.

0.9(0.1) 0.9 (0.1) 0.9997 (0.0002) 0.8 (0.3)
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