
Fieldtrip for Dummies Stephen Whitmarsh 1 | P a g e

Double Rainbow edition

Fieldtrip for Dummies Stephen Whitmarsh 2 | P a g e

Foreword

This document is intended to give a little background in the use of FieldTrip. It is not a manual, nor is it

meant to be canonical or generic for all possible uses. I am making this from my limited experience as a

user, not as a developer. Also, at the time of making this, many modifications on the code, both in detail

as well as more substantive ones (e.g. a different implementation of data structure in its main functions)

are planned. I do believe, however, that an absolute beginner might benefit from a bit of overview,

especially those who want to end up using FieldTrip for frequency and time-locked (MEG) data-analysis

within a cognitive paradigm in humans, from sensor to source level. It is meant to be read before one

commences with the analysis as a background on which to explore the already detailed documentation

available at the FieldTrip wiki page. However, some experience in programming, and of Matlab in

particular, is definitely needed. I would like to refer to the Matlab knowledge database on intranet for

those that need help getting started (at the Donders Center). Finally, please see this attempt itself as

experimental. Because of the fact that FieldTrip, from the developers point of view, is investing most of

its efforts in innovation, a full manual will never be up to date, or even correct, at least not for long.

Table of Contents

Introduction .. 3

Data Structure in FieldTrip .. 4

Trial structure .. 5

Trial bookkeeping, part I ... 6

Defining trials .. 7

Trial bookkeeping, Part II .. 8

Preprocessing .. 9

Introduction .. 10

Visual data inspection ... 11

Using ICA for eye artifact removal .. 12

Filtering ... 14

Calculating spectral estimates .. 15

Power per trial .. 16

Power changes over time ... 16

Sliding time windows .. 17

Selecting trials using .trialinfo ... 19

ft_freqanalysis output ... 20

Non-paired comparison .. 23

Paired comparison .. 24

Correlation .. 25

Averaging over time/frequencies/sensors ... 26

Cluster statistics ... 28

Fieldtrip for Dummies Stephen Whitmarsh 3 | P a g e

Trial based analysis

Introduction
In most cases you would like to analyze your data in respect to stimulus/condition markers recorded

within the data. Alternatively, you might want to define trials based upon visual inspection of the data,

or based upon recordings of external device (eyetracker, EOG, SCR, TMS, etc) or logfile. For the sake of

the purpose of overview only go into the first option although all these latter options are certainly

supported in FieldTrip. If possible always record stimulus/condition markers in your EEG/MEG data. It

will make the analysis, if not life itself, substantially easier. You might have coded every stimulus with its

own code, or rather used the marker to code the condition number. In any case, most probably the first

step you want to do is to load your data and segment it into conditions according to the markers in the

data. In the end you’ll just need to find a nice test-statistic, e.g. average alpha-power, and do your

statistical comparison:

All data

time

channels

Average A Average B

time
trials

ch
an

n
el

s Condition

B

time
trials

ch
an

n
el

s Condition

A

Statistics

Fieldtrip for Dummies Stephen Whitmarsh 4 | P a g e

Data Structure in FieldTrip
First of all it is very important to get comfortable with the way FieldTrip manages the structure of your

data. Although it might take a little getting used to, in many ways it is obvious and determined by the

inherent structure of the data.

EEG and MEG data is composed of many channels and many time points. Therefore it contains a sample,

a single number representing electrovolts or (square) tesla, for every Channel x Time point:

In Fieltrip this is contained within in a single data matrix of [channels x timepoints], for instance:

data.trial{1}: [32x1000 double]

For now you can ignore that fact that it is within a field called ‘trial’. At the moment there is only one

trial so this is just to be able to generalize to the case then we have segmented the data into separate

trials. So if you, for instance, want to refer to the 10th sample of the second channel, you might simply

type:

data.trial{1}(2,10)

Note that the exact timing can’t be derived from the data itself. For that we need to know the

samplerate (in samples per second, or Hertz). This is found in the data structure as an extra field called

‘fsample’. For example:

 data.fsample = 600;

The representation of the data in terms of time is of course relative. In most cases only after defining

trials will we be saying something like “at 0.5 seconds after stimulus”.

channel 1

channel 2

channel 3

channel 4

Time

second

sample

Fieldtrip for Dummies Stephen Whitmarsh 5 | P a g e

If you are not familiar with Matlab you might not

know the difference between structure-arrays and

cell-arrays since it is not very obvious. Superficially

speaking cell-arrays can contain almost anything and

are just a convenient way of organizing, while

structure-arrays are always numeric and of the same

type. The benefits of structure-arrays are in the quick

calculations you can do within them, while the

benefits of cell-arrays are the easy way of indexing.

Also in cell-arrays every entry can have different

dimensions of the same field, for instance in our

specific case of channels x time points. This is the

reason it is implemented in the way since this give

the opportunity to represent trials of different

lengths.

Trial structure
Similarly as how the inherent structure of the original data is represented in the first step described

above, the trial structure is also implemented at the level of the data structure. This means that if you

cut up your data into separate trials, the new structure of the data will reflect this. The added dimension

of trials is represented in FieldTrip as a series of [channels x time] cell-arrays:

 data.trial: {1x25 cell}

Looking at one trial separately gives us the familiar

channels x time structure:

 data.trial{5}: [32x1000 double]

Most often every trial has the same time axis. E.g.

they all go from one second before the marker until

three second after the marker. This is not always the

case however, and is the reason that every trial has its

own time axis. It has the same length as the data,

defining a (relative) time point in seconds for every

sample in the data, for instance

 data.time{5}: [1x1000 double] % of which a small part might be: [… 1.06 1.07 1.08 1.09 …]

Where the trials were originally from, meaning the samples in the continuous data is found in

data.sampleinfo. It has a simple two column format of a start and end sample number for every trial (on

every row).

 data.samplelinfo: [2x25 double] % one row might be: [173450 174450]

Finally, you might have extra information per trial about the specific condition that the trial belongs to,

the response time, etc. How to include this information yourself will be explored next but for now it will

suffice to say you can might find it in an extra field called trialinfo where every row contains some extra

info for every trial. For example:

 data.trialinfo: [3x25 double] % one row might be: [100 3.4556 1]

Fieldtrip for Dummies Stephen Whitmarsh 6 | P a g e

Trial bookkeeping, part I
At this point you might ask: “how does FieldTrip know which trials correspond to which condition?”

Unlike perhaps other analysis packages, it doesn’t. You will have to do your own bookkeeping on that.

How you want to do that, and indeed if you want to do that, will depend on how you want to undertake

your analysis. Let’s take the simplest case of comparing the averages (of whatever) of two conditions. In

FieldTrip this can be done in two ways:

1. Doing the whole analysis separately for each condition (starting with preprocessing).

a. Then average over conditions

b. Compare the averages

2. Doing the whole analysis over all the trials at once.

a. Split the trials belonging to each condition.

b. Average over conditions

c. Compare the averages

The main difference between the two approaches considering trial bookkeeping is that in the first case

you do not need any trial bookkeeping – you simple only read and process the data you need separately

for every conditions.

The other option is to postpone the separation of trials into conditions. This would make sense in any

trial-by-trial based analysis [sic] or just purely for the sake of keeping stuff together.

We’ll start with the first step. The second is an extension of that one.

Fieldtrip for Dummies Stephen Whitmarsh 7 | P a g e

Defining trials
Assuming we have marked our data file with codes representing conditions, we want to know how to

segment the data relative to these markers. Note that although you might only be interested in the first

second after the stimulus code, you might want to consider including a baseline period. Of course there

are many other considerations. For the moment we will assume all trials to be of equal length and not to

be overlapping.

So first of all we need to specify what marker codes belong to what condition. We do that by creating

two arrays of codes, one for every condition, e.g.:

 markersA = [1:5 11]; % 1 2 3 4 5 11
 markersB = [6:10 12]; % 6 7 8 9 10 12

Then there is the timing we need to define. Let’s already put it in a cfg structure (more about the cfg

structure later):

 cfg = []; % create an empty variable called cfg
 cfg.trialdef.prestim = 0.5; % in seconds
 cfg.trialdef.poststim = 2; % in seconds

In addition, we need to specify where those markers are located. This will be different for every system.

 cfg.trialdef.eventtype = ‘input’; % use ‘?’ to get a list of the available types

Let’s now also add to the cfg the events as we specified them a moment before and - as we decided

previously - one condition at a time:

 cfg.trialdef.eventvalue = markersA;

Now, the last thing we need to do is to point to the datafile where to read the event markers from.

 cfg.dataset = ‘subject01.eeg’;

We can now call our first FieldTrip function:

 cfg = ft_definetrial(cfg);

Notice that what is happening here is that a cfg structure is fed into ft_definetrial, which returns it again

but with an added field called cfg.trl. This is a simple list of three columns where every row describes a

separate trial start, end and offset (interval before the event) in sample numbers, relative to the event

values we specified:

 cfg.trl: [50x3 double]

This is all we need to load the appropriate data using ft_preprocessing, using the different stimulus

events values to load every condition separately. You can jump ahead to preprocessing or stay for the

Fieldtrip for Dummies Stephen Whitmarsh 8 | P a g e

next part where we will look at how to adapt our trial definition so we can still do some trial

bookkeeping later on.

Trial bookkeeping, Part II
What makes ft_definetrial very flexible is that it uses a separate trial function you can customize to fit

your specific requirements.

Within trialfun the trl is made according to specifications given through the cfg, as well as anything else

you want to add. For instance, you might want to make trials dependent not only on the stimulus

marker, but also on a correct response marker. This would be the place to do that. Also, sometimes you

might be left with a rather awkward way of coding your conditions. This would also be the place to

recode your trials and create a less ambiguous system.

For the purpose of trial bookkeeping we only need to append one extra column (or more) to the

standard three columns of the trl. Here we write information about the stimulus code, response time,

condition numbers, etc. Next in ft_preprocessing (explained next) these extra columns will be put in an

extra field of the data structure (trialinfo). This will enable us at any moment during our analysis to

select trials based upon any arbitrary reason.

You are not obliged to make all

trials the same length. Be careful

though as you might end up in a

statistical snake-pit later.

st
a

rt
 s

a
m

p
le

en

d
 s

a
m

p
le

o

ff
se

t
st

im
u

lu
s

co
d

e

…
..

…

tr
ia

ls

ft_definetrial.m trialfun_custom.m

cfg.trialfun = ‘trialfun_custom’;
cfg.dataset = ‘exampledata.eeg’

Dataset with

markers

cfg.trl ‘exampledata.eeg’

Fieldtrip for Dummies Stephen Whitmarsh 9 | P a g e

Preprocessing
Preprocessing (ft_preprocessing.m) was the second main function implemented during FieldTrip’s

development. As the name suggests it’s takes care of the first steps in processing your data. This means:

1. Loading the data into a FieldTrip data structure

2. Rereferencing

3. Cutting up your data into trials (if a trl is specified)

4. Baseline correction

5. Detrend

6. Filtering (high, low, band pass and notch)

Besides loading the data all the other functionalities can be done at any later stage. They are not set by

default. We’ll go through them in their own time and use ft_preprocessing only for the first two steps.

If we don’t specify the trial definition we made previously, ft_preprocessing would load all data and put

them into a [channels x time] array of a single trial (e.g. in data.trial{1}). To save memory it is sometimes

preferred to load only the data that is actually used, and you’ll need to segment the data into trials

sooner or later anyway. To do so we supply ft_preprocessing with the trl we made previously. You might

have everything you need already specified within the cfg, but just to be sure we’ll repeat it here:

cfg.trl = trl; % saved somewhere previously
cfg.dataset = ‘exampledata.eeg’; % data file, you might also need to add the path to it

 trialdata = ft_preprocessing(cfg); % call preprocessing, putting the output in ‘trialdata’

What we end up with now is a datastructure called trialdata. See the previous ‘trialstructure’ on how

the data it is organized. Please note here that all the info that was contained in the trl is now put in two

different fields of the datastructure. The first two colums of the trl that described the start and end

samples in the original data are now found in trialdata.sampleinfo. All the extra information for our trial

bookkeeping that was put in extra columns of the trl are now found in trialdata.trialinfo.

continuous

dataset

‘exampledata.eeg’

st
a

rt
 s

a
m

p
le

en
d

 s
a

m
p

le

o
ff

se
ts

st

im
u

lu
s

co
d

es

…
..

…

tr
ia

ls

cfg.trl

ft_preprocessing.m

time
trials

ch
an

n
el

s trialdata

.sampleinfo

st
a

rt
 s

a
m

p
le

en

d
 s

a
m

p
le

tr
ia

ls

.trialinfo

st
im

u
lu

s
co

d
es

…

tr
ia

ls

Fieldtrip for Dummies Stephen Whitmarsh 10 | P a g e

Artifact rejection

Introduction
Finding an appropriate approach to artifact rejection is not as simple as one might think. Every system,

every experiment and even every subject will vary in number, magnitude and type of artifacts. Also,

some researchers might be okay with just rejecting trials with any artifacts, some only if eye blinks come

before a stimulus while again others might want to correct for eye and movement artifacts by using an

ICA approach. Furthermore, some artifacts, like spikes, might be easy to detect because of their signal

properties, while others might be much harder to detect. For these reasons I believe one cannot do

without visual inspection of the data. Only in very rare cases of very typical and well described artifacts,

such as jumps from a specific MEG system, we think a fully automatic artifact rejection is warranted.

Besides all those rational considerations, manually going through your data early will also give you a

certain ‘feeling’ of what your data is like.

Of course, in the end you would like to have certain standardized approach to your artifact rejection

that will give you the best results possible. I don’t know if something like that exists and rather think

everyone has his or her own personal preferences. Although seemingly rather time-consuming, I myself

ended up with the following procedure. You need not follow it, it’s just a suggestion. It does give me the

possibility of explaining some of the following steps in more detail. In particular it will explain a use of

ft_databrowser, a recently added function which is not yet documented elsewhere.

1. Visually inspect the dataset and mark those segments that contain obvious movements,

(system) spikes or muscle artifacts, leaving in all but the most extreme eye artifacts.

2. Reject the trials that contain artifacts.

3. Decompose the data using ICA. Note that ICA can give very unreliable results when the data

contains a lot of (correlated) noise. The cleaner the data is already, the better the ICA results.

4. Find components clearly corresponding to eye blinks and saccades.

5. Recompose data without those components.

6. Go through data again visually and manually selects segments that still show any remaining

artifacts, being from eye blinks, movements, etc.

I know this looks like a lot of work. However, it might pay off in the end when you are certain your data

is clean and you do not have to go back to satisfy that slightly uneasy feeling that your results might ‘all

be artifacts’. Of course they might still be, but at least you did everything you could.

Fieldtrip for Dummies Stephen Whitmarsh 11 | P a g e

Visual data inspection
As most FieldTrip functions ft_databrowser needs a configuration structure and a data structure as

input. First of all we can specify how to visualize the data:

We can also specify if we want to look at the data trial-by-trial, or if we want to treat it as continuous

data. In the latter case we need to specify how large the time segments on display need to be in

cfg.blocksize (in seconds):

If we now call cfg = ft_databrowser(cfg,data), we are able to scroll through the data and select those

segments containing muscle artifacts and the like. In the case you want to remove eye artifacts with ICA

you can leave those in. If we now exit the databrowser by pressing ‘q’ our cfg is returned with an extra

field containing a list of start and end samples for every data segment we selected:

cfg.artfctdef.visual.artifact: [2xnArtifacts double]

Note that ft_databrowser does not do anything with your data. To remove the trials that overlap with

the segments we selected (and which are now in our cfg) and to save the remaining data in a new data

structure we still need to use the function ft_rejectartifact:

 cfg.artfctdef.reject = ‘complete’;
cleandata = ft_rejectartifact(cfg,data);

ch
an

n
el

s

time

cfg.viewmode = ‘butterfly; cfg.viewmode = ‘horizontal’;

ch
an

n
el

s

time

trial

trial

cfg.continuous = ‘no;

cfg.continuous = ‘yes’;
cfg.blocksize = 12;

You can extend the type of events you can

mark by adding to cfg.selectvisual. You can also

use the selection directly for something else by

supplying an eval argument in cfg.selectmode.

Use this to make topoplots or even movies!

display display

Fieldtrip for Dummies Stephen Whitmarsh 12 | P a g e

Using ICA for eye artifact removal
Severe contamination of EEG/MEG activity by eye movements, blinks, muscle, heart and line noise is a

serious problem for its interpretation and analysis. Many methods exist to remove eye movement and

blink artifacts. Simply rejecting contaminated epochs results in a considerable loss of collected

information. Often regression in the time or frequency domain is performed on simultaneous electro-

oculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG

artifacts in the other channels. However, EOG records also contain brain signals, so regressing out EOG

activity inevitably involves subtracting a portion of the relevant brain-signal from each recording as well.

Also, since many noise sources, include muscle noise, electrode noise and line noise, have no clear

reference channels, regression methods cannot be used to removed them. ICA can effectively detect,

separate and remove activity in EEG/MEG records from a wide variety of artifactual sources, with results

comparing favorably to those obtained using regression- or PCA-based methods

(http://sccn.ucsd.edu/~scott/tutorial/).

First we need to decompose the data into independent components. The only thing we have to be sure

of is that we only use the actual EEG or MEG channels and don’t use reference sensors or EOG:

cfg = [];
cfg.channel = ‘EEG’;
ic_data = ft_componentanalysis(cfg,cleandata);

The ICA will return as many components as you put channels in. Each component consists of a

component timecourse for every trial (ic_data.trial) together with a single topography (ic_data.topo):

When ft_componentanalysis is done (it could take a while) we have to find those components we want

to substract from our data. We’ll use ft_databrowser for this again, only looking at ten ‘channels’

(components) at a time:

cfg = [];
cfg.viewmode = ‘component’;
cfg.continuous = ‘yes’;
cfg.blocksize = 30;
cfg.channels = [1:10];
ft_databrowser(cfg,ic_data);

time
trials

ch
an

n
el

s trialdata

time
trials co

m
p

o
n

en
ts

 time

courses

topo’s

components

ft_componentanalysis

http://sccn.ucsd.edu/~scott/tutorial/

Fieldtrip for Dummies Stephen Whitmarsh 13 | P a g e

Components are automatically sorted based upon on the sum of the weighting factors, commonly

resulting in the most interesting components appearing on top. In the example below the first

component is clearly an eye-blink because the appearance of an eye-blink in the time-course and the

frontal topography. The second component is most probably related to eye movements for similar

reasons. The fourth component is picking up the heartbeat. There is no reason to assume the third

component to be artifactual.

To recompose the data without components 1, 2 and 4 use ft_rejectcomponents:

cfg = [];
cfg.component = [1 2 4];
data_iccleaned = ft_rejectcomponent(cfg, ic_data);

Our data is quite clean now but I would recommend a last manual inspection on a trial by trial basis. It

might happen that you missed some artifacts in the first run as it was only a rough scan for the benefit

of the ICA. It might also very well be that the ICA failed for some reason, or that you skipped artifacts in

the first run that you thought were eye-blinks but which were not removed in the end. Although you

know the drill by now, here is the code:

cfg = [];
cfg.viewmode = ‘horizontal’;
cfg.continuous = ‘no’;
ft_databrowser(cfg,data_iccleaned);

cfg.artfctdef.remove = ‘complete’;
data_manual = ft_rejectartifact(cfg,data_iccleaned);

Fieldtrip for Dummies Stephen Whitmarsh 14 | P a g e

Filtering
Filtering your data will also get rid of some common artifacts, especially line noise - the 50 Hz ‘humming’

of the electric power supply and instruments connected to it. To clean up your data close around 50 Hz,

and its harmonics at 100 and 150 Hz, you can use a band-stop filter. Add the following to your cfg before

you run ft_preprocessing the first time (on page 9):

cfg.bsfilter = ‘yes’;
cfg.bsfreq = [49 51; 99 100; 149 151];
…
trialdata = ft_preprocessing(cfg);

If you are doing an event-related-potential (ERP) study you might not even be interested in higher

frequencies. Indeed, doing a low-pass filter on your data will make your ERP’s look much smoother. By

adding the following before running preprocessing you will be left with data only composed of

frequencies below that of the specified cut-off frequency. Note, however, that you are throwing away a

lot of data. These higher frequencies might be very useful to detect for instance movement artifacts or

to compute accurate independent components for eye-blink correction. Using the band-pass filter in this

way therefore is better done after you did all your other previous methods of artifact rejection.

This brings us to a slightly different use of ft_preprocessing where we supply it data instead of letting it

read from disk. For instance, continuing with the data from the previous page, we could do the

following:

 cfg = [];
 cfg.lpfilter = ‘yes’;
 cfg.lpfreq = [35];
 data_lp = ft_preprocessing(cfg,data_manual);

Want to know exactly how digital filters work?

Want to intuitively grasp the FFT? You might

enjoy reading the great “The Scientist and

Engineers’s Guide to Digital Signal Processing”,

free on www.dspguide.com

Fieldtrip for Dummies Stephen Whitmarsh 15 | P a g e

Frequency analysis

Calculating spectral estimates
Ft_freqanalysis supports many approaches to spectral calculations. You might be going back and forth

between using different methods, what, when and how many tapers to use, choosing different time-

frequency windows, etc. We’ll discuss two main approaches: doing a FFT on the whole trial at once and

using a sliding time-window. After that the most common features will be explained one by one. At

worst you will have heard about them once more again. At best you’ll have a little bit more grip and

overview on their use.

Let’s begin with the catch: every signal in the time domain can be described in the frequency domain and

vice-versa - although doing so does not always make much sense.

The translation from one domain to the other is done using a variation of the (inverse) Fourier

transform. FieldTrip combines all its calculations from the time to the frequency domain in the function

ft_freqanalysis. It will result in a data structure that has to be able to contain not just channels x time for

every trial, but now also has to add frequency as a dimension:

time x channel data time x channel x trial

trial{i}

time

ch
an

n
el

s

time
trial

ch
an

n
el

s

time x channel x frequency data

fr
eq

u
en

cy

channels

time

ft_preprocessing ft_freqanalysis

fr
eq

u
en

cy

channels

time

fr
eq

u
en

cy

channels

time

Fieldtrip for Dummies Stephen Whitmarsh 16 | P a g e

Power per trial
In the simplest case you are interested in the power of certain frequencies (frequencies of interest:
cfg.foi) of the whole trial. This is done by using ‘mtmfft’ as the method:

 cfg = [];
 cfg.method = ‘mtmfft’;

cfg.output = ‘pow’;
cfg.foi = [1:30];

Note that in cfg.foi we are now specifying a list of frequencies with steps of 1 Hz. It is also possible to

specify a range (cfg.foilim = [1 30];) which will output an average power over these frequencies, or to

take different size “steps” (cfg.foi = [1:2:30];).

Power changes over time
The most used method for frequency analysis in FieldTrip besides 'mtmfft' is 'mtmconvol'. There are two

main differences between the two. First, ‘mtmfft’ gives the average frequency-content of your trial,

whereas 'mtmconvol' gives the time-frequency representation of your trial, i.e. how the frequency

content of your trial changes over time. Second, they differ in their implementation. Below a short

description:

Mtmfft

‘Mtmfft’ consists of 2 main steps. Step 1: Your raw data is windowed/tapered by a taper you selected in

cfg.taper (e.g. hanning, dpss, etc.). This is important for various reasons explained in the next section.

Step 2: the Fast-Fourier-Fransform (FFT) of your data is taken, and parts of this are selected as output.

Mtmconvol

‘Mtmconvol’ works a little differently. One of several methods to get a time-frequency representation of

your data is by using wavelet-convolution, where a wavelet is 'sliding' over your raw data, at each time-

point taking the average of a element-wise multiplication of all the data that 'lies under' your wavelet.

‘Mtmconvol’ does exactly this, but then by multiplication in the frequency domain (which is much faster

than convolution in the time-domain). Step 1: wavelets are created, the length determined by

‘cfg.tf_timwin’, with 1 wavelet per frequency. Step 2: each wavelet is windowed/tapered similarly as

step 1 in ‘mtmfft’. Step 3: the Fast-Fourier-Transform is taken of both your raw data and your wavelet

and multiplied with each other (for each frequency). Step 4: the inverse Fourier-transform is taken, and

parts of this are selected as output.

Fieldtrip for Dummies Stephen Whitmarsh 17 | P a g e

Sliding time windows
If you are interested in the development of the power (or other frequency information beyond the

scope of this document) over time, you need to cut up the time course into pieces and calculate the

power for every piece separately:

However, because of the straight edges of the time window spectral leakage will occur (something you

do not want). It is therefore recommended make the edges of the time window taper off to zero by for

instance multiplying the time course with an inverted cosine function. This is called a Hanning window:

As you can see using such a taper will make you lose data between the time windows. This is

compensated by using an overlapping time window, providing the average power of the time-window

centered at multiple time-points. Note that although you sample in much smaller steps, the value for

every window is still calculated for the whole time window:

slide to next
time segment

time window
(square)

time window
(square)

time

slide to next
overlapping segment

time

time window

(hanning)

time window

(hanning)

slide to next
time segment

time

time window

(hanning)

time window

(hanning)

time sliding step

time

time

Fieldtrip for Dummies Stephen Whitmarsh 18 | P a g e

One consideration in choosing the width of your time-window is the wavelength of the frequency you

want to calculate. As we view an oscillation as consisting of several cycles, this needs to be reflected in

the time-window. Also, you need several cycles captured in your time-window to have a relative reliable

estimate of its power during that time. This means that for a signal of 2 Hz the time window should be

several times 0.5 seconds (T = 1/f). For higher frequencies this can be much shorter, 30Hz giving you a

period of about 33 milliseconds. To not make concessions for one or the other extreme you can make

your time-windows dependent on the frequency by making it a multiple of its period. It is recommended

to not use less than 3 cycles. Remember, the way you define your window biases your results towards

that particular view. If you are searching for long-lasting oscillations and therefore use time-windows of

e.g. 10 cycles, your results will reflect that portion of your data most strongly. If, instead, you use a

window of 1 cycle, do not expect to see (although you might) oscillations evolving over time, as you are

biasing your results against it.

To summarize let’s look at the different parameters that have to be set for doing a frequency analysis

with a sliding, frequency dependant, time window, using a Hanning taper and then call ft_freqanalysis

on one data set:

cfg.trials = trialsA;
cfg.output = ‘pow’;
cfg.method = ‘mtmconvol’;
cfg.taper = ‘hanning’;
cfg.foi = 1:30;
cfg.t_ftimwin = 4 ./ cfg.foi;
cfg.toi = -0.5:0.05:2;
freq = ft_freqanalysis(cfg, data_lp);

time window

fr
eq

u
en

cy

time

fr
eq

u
en

cy

sliding step

Fieldtrip for Dummies Stephen Whitmarsh 19 | P a g e

Selecting trials using .trialinfo
By default ft_freqanalysis (and as we will see, also ft_timelockanalysis) will not retain information on

separate trials but will output the average frequency information (power in this case) over all trials.

Also for reasons of memory and speed this might be a good moment to separate your trials into

conditions and do a frequency analysis for every condition separately.

You can select the trials on which to do ft_freqanalysis or ft_timelockanalysis by specifying trial indexes

in cfg.trials. The trial index is nothing more than a number pointing to the n-th trial in the data structure.

Since we have all the information about the conditions that the trials belong to stored in the .trialinfo

field, we can search through it to make such a list. Remember we already made a list of trial codes

belonging to our two conditions (markersA & markersB). We’ll just search through our .trialinfo looking

for those trials that match those codes:

trialsA = []; %make an empty array

for i = 1 : size(markersA,2) % start a loop from 1 to the number of items in our…

% markersA array
index = find(data_manual.trialinfo == markersA(i)); % find the index in data_manual.trialinfo that…

% corresponds with the i-th item in the markersA list.
% if there is not, it will remain empty

trialsA = [trialsA index] % add the index to the trialA array

end % end of loop

We can now add the following line to the cfg:

cfg.trials = trialsA;

However, if you want to save trials separately you can specify the following option:

 cfg.keeptrials = ‘yes’; %default = ‘no’

Fieldtrip for Dummies Stephen Whitmarsh 20 | P a g e

ft_freqanalysis output

We might go further into the output of ft_freqanalysis in a future release of this document but for now

it suffices to say it gives a datastructure as output similar as the input structure but now with the field

.powspctrm instead of .trial or .avg.trial.

Fieldtrip for Dummies Stephen Whitmarsh 21 | P a g e

Statistics

FieldTrip distinguishes itself perhaps most in its flexibility in statistical approaches. In a similar way as

with ft_definetrial and ft_freqanalysis, ft_timelockedstatistics and ft_freqstatistics call auxiliary functions

to calculate the different statistics. Don’t be afraid though – most users won’t need to go nitty-gritty and

go through those functions. As an end user needs to understand most of all is:

 The difference between descriptive and inferential statistic.

 The common structure for the input to - and output from - ft_freqstatistics.

Descriptive & inferential statistic

The difference between descriptive and inferential statistic is often implicit in neuroimaging analysis

packages, or in research articles for that matter. It really pays off to consider them separately here and

to entertain the many possibilities of combining descriptive statistics with statistical methods. It is

paramount in understanding the philosophy and appreciating the full statistical potential of FieldTrip.

So what do we mean with descriptive statistic? It’s the single value you end up with after reducing your

data(set) and representing an aspect of its distribution which you would want to use for statistical

comparison. Think for instance about “average alpha power over trials”, “variance of the P300

amplitude” or “the latency of maximal mu-rhythm suppression”. You might calculate a descriptive

statistic for every subject, e.g. the difference between conditions (which you want to compare over

subjects). Conversely, you might want to use one descriptive for every trial (which you will compare

within a subject). A descriptive statistic is not limited to averages of power or amplitude but can be any

output of a statistical procedure itself, such as a Z-value, t-value, variance, mean-difference or Beta-

value.

The inferential statistic is what you get when you test your descriptive statistics against the null-

hypothesis, e.g. is your p-value. Again, there are many ways to do your null-hypothesis testing, e.g. using

a (paired) t-test or Montecarlo approach.

Fieldtrip for Dummies Stephen Whitmarsh 22 | P a g e

Input – output structure of ft_freqstatistics

Also when it comes to your statistical analysis FieldTrip doesn’t let you down: The structure of its output

is consistent with the datastructure of its input. We will revisit the following figure a couple of times, but

for now please notice notice:

1) Unless you specify otherwise through averaging on a certain dimension, the structure of the

output will have the same structure as the input

2) Those values of the output – the descriptive statistics, the inferential statistics and the decisions

(to reject your null-hypothesis), are dependent on cfg.statistics, cfg.method and cfg.alpha,

respectively.

3) That we need to specify a design matrix – our next topic

ft
_

fr
eq

st
a

ti
st

ic
s

.stat

.prob

 cfg.method

fr
eq

u
en

cy

time

.mask

sig

Design matrix

cfg.statistics

cfg.method

cfg.alpha

Data output (statistics)

Data input

n
r.

 o
f

o
b

se
rv

at
io

n
s

fr
eq

u
en

cy

time

channel

Fieldtrip for Dummies Stephen Whitmarsh 23 | P a g e

Input: data and your designmatrix

It should be obvious that besides feeding data we need to specify how the separate data entries should

be treated – which belong to the same condition for instance. What is common to all designs is that

data entries are always assumed to be in a row. In the simplest case we only need to specify a code

corresponding to the independent variable for every data entry. Note the use of the parameters ivar and

uvar. They denote nothing more than the rownumber in the designmatrix to find either your

independent variables (ivar) or units of observation (uvar).

Non-paired comparison
This could be simply the condition number as we have in the case of a (non-paired) comparison of two

series of data entries. Note that this is the same regardless if we are dealing with a within-subject (e.g.

condition A versus B) or a between-subject design (e.g. group A versus B, session A versus B):

A B

cfg.design = [ones(1,5) ones(1,5)*2;];
cfg.ivar = 1;

1 1 1 1 1 2 2 2 2 2

fi
rs

t
d

a
ta

 e
n

tr
y

se
co

n
d

 d
a

ta
 e

n
tr

y

et
c.

Fieldtrip for Dummies Stephen Whitmarsh 24 | P a g e

Paired comparison
Besides a row coding for the independent variable such as your experimental condition (the first row,

therefore: cfg.ivar = 1;), we can code for every dependant variable, or unit of observation in the second

row (uvar = 2); The units of observation often are subjects (in a certain group) or trials (of a certain

condition), for instance. This allows us to do a paired comparison. The example below is just an example,

there is no necessity to have such an organized design, as long as you make sure every n-th column

corresponds to the appropriate n-th data entry.

2

A B

1 3 4 5 2 1 3 4 5

cfg.design = [ones(1,5) ones(1,5)*2; 1:5 1:5];
cfg.ivar = 1;
cfg.uvar = 2;

1 1 1 1 1 2 2 2 2 2

1 2 3 4 5 1 2 3 4 5

fi
rs

t
d

a
ta

 e
n

tr
y

se
co

n
d

 d
a

ta
 e

n
tr

y

et
c.

condition

subject / trial

Fieldtrip for Dummies Stephen Whitmarsh 25 | P a g e

Correlation
You might not want to test groups but rather calculate a correlation with any other series of values.

These could be reaction times, a subject score on a questionnaire or even power in another frequency.

Your design then will only have to specify those in a single row. For the example below we’ll just make

an imaginary [sic] array of values.

.2 .1 .3 .4 .5 .3 .4 .2 .1 .2

cfg.design = [0.1 0.2 0.3 0.4 0.5 0.4 0.3 0.1 0.2];
cfg.ivar = 1;

.1 .2 .3 .4 .5 .4 .3 .2 .1 .2

fi
rs

t
d

a
ta

 e
n

tr
y

se
co

n
d

 d
a

ta
 e

n
tr

y

et
c.

Fieldtrip for Dummies Stephen Whitmarsh 26 | P a g e

Averaging over time/frequencies/sensors
As you are well aware, however, the power of our statistical test (not to be confused with test statistic)
is vulnerable to the multiple comparison problem, a problem that is greatly exacerbated with the
multidimensional nature of psychophysiological data. One way of dealing with this problem is simply to
average over (parts of) a dimension. Doing this now, instead of earlier during ft_preprocessing,
ft_freqanalysis or ft_timelockanalysis gives us all the flexibility to explore different windows on which to
calculate our test statistic (“average power of…”, or “average amplitude of…”). Remember how we
showed in the previous page to specify a time-frequency window or select channels. We can simply
average over one of these dimensions as follows:

fr
eq

u
en

cy

channel

ch
an

n
el

time

fr
eq

u
en

cy

time

cfg.avgovertime = ‘yes’; cfg.avgoverfreq= ‘yes’; cfg.avgoverchan = ‘yes’;

channels

fr
eq

u
en

cy

time

Fieldtrip for Dummies Stephen Whitmarsh 27 | P a g e

Descriptive Statistics

 actvsblIT

 depsamplesF

 depsamplesT

 depsamplesregrT

 diff

 diff_itc

 indepsamplesF

 indepsamplesT

 indepsamplesZcoh

 mean

 pooledT

 roc

Statistical methods

Once the design matrix is specified and the test statistic is defined we only need to decide how we are

going to test our hypothesis. Of course the statistical methods one will use are somewhat dependent on

the design matrix you specified but let’s just summarize them all here:

 Montecarlo

 Analytic

 Stats

 Crossvalidate

Calling ft_freqanalysis

2

1 2

1 3 4 5 2 1 3 4 5

C
o

n
d

it
io

n
 A

{1
}

…

C
o

n
d

it
o

n
 A

{5
}

…

…

C
o

n
d

it
io

n
 B

{1
}

…

C
o

n
d

it
o

n
 B

{5
}

…

…

cfg.design
ft

_f
re

qs
ta

ti
st

ic
s

cfg.foi

cfg.toi

fr
eq

u
en

cy

channels

time

data

Fieldtrip for Dummies Stephen Whitmarsh 28 | P a g e

Monte Carlo statistics explained
To be included in the next release.

Cluster statistics
To be included in the next release.

Fieldtrip for Dummies Stephen Whitmarsh 29 | P a g e

Epilogue

I hope this document has been helpful explaining some data analysis / FieldTrip issues, perhaps at least

in a different way. We now continue with source analysis in the form of a construction manual for

Beamformer (DICS and LCMV) as implemented in FieldTrip. In a step-by-step way you will be taken

through all intermediate operations in an as visual as possible way. All you will see it is greatly inspired

by the IKEA manuals and as such can be printed out. Just crop 4x4 pages on a single A4, tape them

together and fold! Good luck and have fun.

Stephen Whitmarsh

Fieldtrip for Dummies Stephen Whitmarsh 30 | P a g e

construction manual

Fieldtrip for Dummies Stephen Whitmarsh 31 | P a g e

WIKI

construction manual

Fieldtrip for Dummies Stephen Whitmarsh 32 | P a g e

Trust your data

 Rejected artifacts

 Third-order gradient

 Filtered (notch)

 Checked data on sensor level

 Statistics on sensor level

 Tried the tutorials

 http://fieldtrip.fcdonders.nl/tutorial/beamformer

construction manual

Fieldtrip for Dummies Stephen Whitmarsh 33 | P a g e

Content

1 Forward model

2 Inverse solution

3 Statistics

construction manual

Fieldtrip for Dummies Stephen Whitmarsh 34 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

Fieldtrip for Dummies Stephen Whitmarsh 35 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

1) Where is the head with respect to the sensors?

a. Using headcoils to localize head in system

b. CTF system automatically tracks and outputs this info in data

(gradiometer positions)

freq.grad.pnt = [Nx3]
freq.grad.ori = [Nx3]
freq.grad.label = {Nx1}

Fieldtrip for Dummies Stephen Whitmarsh 36 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

1) Where is the head with respect to the sensors?

2) What is the shape of the brainvolume in which current is flowing?

a. Alignment MRI with CTF headspace using fiducials

 https://intranet.donders.ru.nl/index.php?id=mri2ctf (for in-house purposes)

 http://fieldtrip.fcdonders.nl/example/read_neuromag_mri_and_create_single-

subject_grids_in_individual_head_space_that_are_all_aligned_in_mni_space

x (cm)

z (cm)

y (cm)

Fieldtrip for Dummies Stephen Whitmarsh 37 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

1) Where is the head with respect to the sensors?

2) What is the shape of the brainvolume in which current is flowing?

a. Alignment MRI with CTF headspace using fiducials

b. Segmenting MRI to determine brain morphology

mri = read_mri(mrifile);

cfg = [];
cfg.downsample = 2;
cfg.coordinates = 'ctf';
seg = volumesegment(cfg, mri);

 http://fieldtrip.fcdonders.nl/example/read_neuromag_mri_and_create_single-

subject_grids_in_individual_head_space_that_are_all_aligned_in_mni_space

Fieldtrip for Dummies Stephen Whitmarsh 38 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

1) Where is the head with respect to the sensors?

2) What is the shape of the volume in which current is flowing

3) How does the current affect the activity at the sensor level?

cfg = [];
vol = prepare_singleshell(cfg, seg);

 http://fieldtrip.fcdonders.nl/example/make_leadfields_using_different_headmodels

Conduction model

Fieldtrip for Dummies Stephen Whitmarsh 39 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

1) Where is the head with respect to the sensors?

2) What is the shape of the volume in which current is flowing?

3) How does the current affect the activity at the sensor level?

4) Which locations do you want to scan (grid)?

grid.xgrid = -20:0.8:20;
grid.ygrid = -20:0.8:20;
grid.zgrid = -10:0.8:20;
cfg = [];
cfg.tightgrid = 'yes';
cfg.inwardshift = -1.5;
grid = prepare_dipole_grid(cfg, template_hdm, template_grad);

Outward shift

Fieldtrip for Dummies Stephen Whitmarsh 40 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

1) Where is the head with respect to the sensors?

2) What is the shape of the volume in which current is flowing?

3) How does the current affect the sensor level?

4) Which locations do you want to scan (grid)?

5) Subjects differ in morphology

template grid

Subject 1 Subject 2 Subject 3

Fieldtrip for Dummies Stephen Whitmarsh 41 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

1) Where is the head with respect to the sensors?

2) What is the shape of the volume in which current is flowing?

3) How does the current affect the sensor level?

4) Which locations do you want to scan (grid)?

5) Subjects differ in morphology transform MNI template to individual grid

 norm = volumenormalise(cfg,mri);
 grid = [];
 grid.pos = warp_apply(inv(norm.cfg.final), template_grid.pos, 'homogenous')/10;
 grid.inside = template_grid.inside;
 grid.outside = template_grid.outside;

Prepare template

In
verse n

o
rm

alisatio
n

 example/create_single-subject_grids_in_individual_head_space_that_are_all_aligned_in_mni_space

MNI template grid

single subject CTF grid

 morphological differences

 mm cm

 fiducials ventricles

Fieldtrip for Dummies Stephen Whitmarsh 42 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

volumesegment

Segment., model
& prepare grid

template

(inverse)
warp_apply

prepare_grid

CTF

volume_realign

cfg.grad

cfg.vol

cfg.grid

Prepare_singleshell

Fieldtrip for Dummies Stephen Whitmarsh 43 | P a g e

Forward model

Q: How is a source ‘seen’ by the sensor-array?

1) Where is the head with respect to the sensors?

2) What is the shape of the volume in which current is flowing?

3) How does the current affect the sensor level?

4) Which locations do you want to scan (grid)?

5) Subjects differ in morphology transform MNI template to individual grid

6) Calculate forward model: the leadfield(h)

cfg.grad = grad;

cfg.vol = vol;

cfg.grid = grid;

grid_lf = prepare_leadfield(cfg);

 http://fieldtrip.fcdonders.nl/example/make_leadfields_using_different_headmodels

Sr
1

h1

h2

h3

h4

x1(t)

x2(t)

x3(t)

x4(t)

Sr
n

Fieldtrip for Dummies Stephen Whitmarsh 44 | P a g e

Inverse solution (Beamformer)

Q: What is the activity of a source S, at a location r, given the data x?

1) We now know how to get from source to data: x = h (leadfield) * S

Sr
1

h1

h2

h3

h4

x1(t)

x2(t)

x3(t)

x4(t)

Sr
n

Fieldtrip for Dummies Stephen Whitmarsh 45 | P a g e

Inverse solution (Beamformer)

Q: What is the activity of a source S, at a location r, given the data x?

1) We now know how to get from source to data: x = h (leadfield) * S

2) We want to go from data to source: S = wT * x

a. Solution is not unique (linear combination of sensor-weights)

b. Beamformer calculates the spatial filter (W) by extracting the true

signal at the location while minimizing the variance of the filter

output.

∑ Sr

x1(t)

x2(t)

x3(t)

x4(t)

w1r

w2r

w3r

w4r

Fieldtrip for Dummies Stephen Whitmarsh 46 | P a g e

Inverse solution (Beamformer)

Q: What is the activity of a source S, at a location r, given the data x?

1) We now know how to get from source to data: x = h (leadfield) * S

2) We want to go from data to source: S = wT * x

3) For this we need to extract out of the data the cross-spectral density

(frequency domain) or covariance (time domain)

cfg.output = 'powandcsd';
cfg.foi = 40;
cfg.t_ftimwin = 0.200;
cfg.toi = 0.05:1.5;
freq_condA = freqanalysis(cfg, data);

 http://fieldtrip.fcdonders.nl/tutorial/timefrequencyanalysis
 http://fieldtrip.fcdonders.nl/tutorial/eventrelatedaveraging

Fieldtrip for Dummies Stephen Whitmarsh 47 | P a g e

Inverse solution (Beamformer)

Q: What is the activity of a source S, at a location r, given the data x?

1) We now know how to get from source to data: x = h * S

2) We want to go from data to source: S = wT * x

3) For this we need to extract out of the data the cross-spectral density

(frequency domain) or covariance (time domain)

4) Then we have all the ingredients (CSD and leadfield) to finally calculate the

spatial filter

freqanalysis

cfg.grid = grid;
cfg.method = ‘dics’;
source = sourceanalysis(cfg,freq)

Data

spatial filter

CSD /

covariance

channel
ch

an
n

el

leadfield

 http://fieldtrip.fcdonders.nl/example/lcmv-beamformer

Fieldtrip for Dummies Stephen Whitmarsh 48 | P a g e

Statistics

Q: How can I compare different datasets on the source level?

1) The solution of the beamformer is a unique spatial filter

a. For a specific subject (morphology)

b. For a specific dataset (current-source density or covariance)

multiple sections of data per subject

(e.g. conditions)

one leadfield per subject

CSD / covariance

CSD / covariance

CSD / covariance

Fieldtrip for Dummies Stephen Whitmarsh 49 | P a g e

Statistics

Q: How can I compare different datasets on the source level?

1) The solution of the beamformer is a unique spatial filter

2) Although you can use the same data to make the filter and project to source

level

a. often a common filter is calculated across conditions (using the same

dataset)

b. only the output of different datasets through the same filter are

compared statistically

Source level

spatial filter

 http://fieldtrip.fcdonders.nl/example/common_filters_in_beamforming
 http://fieldtrip.fcdonders.nl/example/source_statistics

Common filter

Common data Dataset B

So
u

rce p
ro

jectio
n

Dataset A

Fieldtrip for Dummies Stephen Whitmarsh 50 | P a g e

Statistics

Q: How can I compare different datasets on the source level?

1) The solution of the beamformer is a unique spatial filter

2) Although you can use the same data to make the filter and project to source

level

a. often a common filter is calculated across conditions (using the same

dataset)

b. only the output of different datasets through the same filter are

compared statistically

3) It is now easy to project your (statistical) data on a MNI brain or cortical

surface (outside the scope of this document, for now)

 http://fieldtrip.fcdonders.nl/tutorial/beamformer
 http://fieldtrip.fcdonders.nl/tutorial/plotting
 http://fieldtrip.fcdonders.nl/tutorial/analysis_protocols

Fieldtrip for Dummies Stephen Whitmarsh 51 | P a g e

•

volumesegment

Segment., model
& prepare grid

template

(inverse)
warp_apply

prepare_grid

CTF

volume_realign

cfg.grad

cfg.vol

cfg.grid

Prepare_singleshell

CSD / covariance

Data

freqanalysis

preprocess, etc.

sourceanalysis

Prepare_leadfield

cfg.grid

freq.powspctrm
freq.crsspctrm

construction manual

Fieldtrip for Dummies Stephen Whitmarsh 52 | P a g e

Nieuwenhuis, I.L.C., Takashima, A., Oostenveld, R., Fernandez, G., and O. Jensen (2008) Visual areas

become less engaged in associative recall following memory stabilization Neuroimage 40:1319-1327.

• Schoffelen JM, Oostenveld R, Fries P (2005). Neuronal coherence as a mechanism of effective

corticospinal interaction. Science. Apr 1;308(5718):111-3.

• Takashima A, Jensen O, Oostenveld R, Maris E, van de Coevering M, Fernández G (2006) Successful

declarative memory formation is associated with ongoing activity during encoding in a distributed

neocortical network related to working memory: An MEG study. Neuroscience 139(1):291-7.

• Hoogenboom N, Schoffelen JM, Oostenveld R, Parkes LM, Fries P. (2006) Localizing human visual gamma-

band activity in frequency, time and space. Neuroimage 29(3):764-73.

• Bauer M, Oostenveld R, Peeters M , Fries P (2006). Tactile spatial attention enhances gamma-band activity

in somatosensory cortex and reduces low-frequency activity in parieto-occipital areas. J. Neurosci.

26(2):490-501.

• Siegel M, Donner TH, Oostenveld R, Fries P, Engel AK. (2006) High-Frequency Activity in Human Visual

Cortex Is Modulated by Visual Motion Strength. Cereb Cortex; [Epub ahead of print]

• Osipova D, Takashima A, Oostenveld R, Fernández G, Maris E, Jensen O. (2006) Theta and gamma

oscillations predict encoding and retrieval of declarative memory. J Neurosci. 26(28):7523-31

• de Wit, T.C.J., Bauer, M., Oostenveld, R., Fries, P. and van Lier, R. (2006) Cortical responses to contextual

influences in amodal completion. Neuroimage. 32:1815-1825.

• Tuladhar, A.M., ter Huurne, T., Schoffelen, J.M., Maris, E., Oostenveld, R., and Jensen, O., (2007) Parieto-

Occipital Sources Account for the Increase in Alpha Activity with Working Memory Load. Hum Brain Mapp

28(8):785-792.

• Medendorp, W.P., Kramer, G.F., Jensen, O., Oostenveld, R., Schoffelen J.M., and Fries, P. (2007)

Oscillatory activity in human parietal and occipital cortex shows hemispheric lateralization and memory

effects in a delayed double-step saccade task. Cerebral Cortex 17(10):2364-2374.

• Jokisch, D. and Jensen, O. (2007) Modulation of gamma and alpha activity during a working memory task

engaging the dorsal and ventral stream. J. Neurosci. 27(12):3244-3251

• van Dijk, H., Schoffelen, J.M., Oostenveld, R., O. Jensen (2008) Pre-stimulus oscillatory activity in the alpha

band predicts visual discrimination ability Journal of Neuroscience 28:1816-1823.

• Koelewijn, T., van Schie, H.T., Bekkering, H., Oostenveld, R., and O. Jensen (2008) Motor-cortical beta

oscillations are modulated by correctness of observed action Neuroimage 40:767-775.

• de Lange, F.P., Jensen, O., Bauer, M., and Toni, I. (2008) Interactions between posterior gamma and

frontal alpha/beta oscillations during imagined actions. Front Hum Neurosci 2:7

• van der Werf, J., Jensen, O., Fries, P., and Medendorp, W.P. (2008) Gamma band activity in human

posterior parietal cortex encodes the motor goal during delayed pro- and antisaccades. Journal of

Neuroscience 28:8397-8405.

http://www.ncbi.nlm.nih.gov/entrez/utils/fref.fcgi?PrId=3058&itool=AbstractPlus-def&uid=17266103&db=pubmed&url=http://dx.doi.org/10.1002/hbm.20306

