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Foreword 

This document is intended to give a little background in the use of FieldTrip. It is not a manual, nor is it 

meant to be canonical or generic for all possible uses. I am making this from my limited experience as a 

user, not as a developer. Also, at the time of making this, many modifications on the code, both in detail 

as well as more substantive ones (e.g. a different implementation of data structure in its main functions) 

are planned. I do believe, however, that an absolute beginner might benefit from a bit of overview, 

especially those who want to end up using FieldTrip for frequency and time-locked (MEG) data-analysis 

within a cognitive paradigm in humans, from sensor to source level. It is meant to be read before one 

commences with the analysis as a background on which to explore the already detailed documentation 

available at the FieldTrip wiki page. However, some experience in programming, and of Matlab in 

particular, is definitely needed. I would like to refer to the Matlab knowledge database on intranet for 

those that need help getting started (at the Donders Center). Finally, please see this attempt itself as 

experimental. Because of the fact that FieldTrip, from the developers point of view, is investing most of 

its efforts in innovation, a full manual will never be up to date, or even correct, at least not for long.  
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Trial based analysis 

Introduction 
In most cases you would like to analyze your data in respect to stimulus/condition markers recorded 

within the data. Alternatively, you might want to define trials based upon visual inspection of the data, 

or based upon recordings of external device (eyetracker, EOG, SCR, TMS, etc) or logfile. For the sake of 

the purpose of overview only go into the first option although all these latter options are certainly 

supported in FieldTrip. If possible always record stimulus/condition markers in your EEG/MEG data. It 

will make the analysis, if not life itself, substantially easier. You might have coded every stimulus with its 

own code, or rather used the marker to code the condition number. In any case, most probably the first 

step you want to do is to load your data and segment it into conditions according to the markers in the 

data. In the end you’ll just need to find a nice test-statistic, e.g. average alpha-power, and do your 

statistical comparison: 
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Data Structure in FieldTrip 
First of all it is very important to get comfortable with the way FieldTrip manages the structure of your 

data. Although it might take a little getting used to, in many ways it is obvious and determined by the 

inherent structure of the data.  

EEG and MEG data is composed of many channels and many time points. Therefore it contains a sample, 

a single number representing electrovolts or (square) tesla, for every Channel x Time point: 

 

 

 

 

 

In Fieltrip this is contained within in a single data matrix of [channels x timepoints], for instance: 

data.trial{1}: [32x1000 double] 

For now you can ignore that fact that it is within a field called ‘trial’. At the moment there is only one 

trial so this is just to be able to generalize to the case then we have segmented the data into separate 

trials. So if you, for instance, want to refer to the 10th sample of the second channel, you might simply 

type:  

data.trial{1}(2,10) 

Note that the exact timing can’t be derived from the data itself. For that we need to know the 

samplerate (in samples per second, or Hertz). This is found in the data structure as an extra field called 

‘fsample’. For example: 

 data.fsample = 600;  

The representation of the data in terms of time is of course relative. In most cases only after defining 

trials will we be saying something like “at 0.5 seconds after stimulus”.  
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If you are not familiar with Matlab you might not 

know the difference between structure-arrays and 

cell-arrays since it is not very obvious. Superficially 

speaking cell-arrays can contain almost anything and 

are just a convenient way of organizing, while 

structure-arrays are always numeric and of the same 

type. The benefits of structure-arrays are in the quick 

calculations you can do within them, while the 

benefits of cell-arrays are the easy way of indexing. 

Also in cell-arrays every entry can have different 

dimensions of the same field, for instance in our 

specific case of channels x time points. This is the 

reason it is implemented in the way since this give 

the opportunity to represent trials of different 

lengths. 

 

Trial structure 
Similarly as how the inherent structure of the original data is represented in the first step described 

above, the trial structure is also implemented at the level of the data structure. This means that if you 

cut up your data into separate trials, the new structure of the data will reflect this. The added dimension 

of trials is represented in FieldTrip as a series of [channels x time] cell-arrays: 

 data.trial: {1x25 cell} 

Looking at one trial separately gives us the familiar 

channels x time structure: 

 data.trial{5}: [32x1000 double] 

Most often every trial has the same time axis. E.g. 

they all go from one second before the marker until 

three second after the marker. This is not always the 

case however, and is the reason that every trial has its 

own time axis. It has the same length as the data, 

defining a (relative) time point in seconds for every 

sample in the data, for instance 

 data.time{5}: [1x1000 double]    % of which a small part might be:  [… 1.06 1.07 1.08 1.09 …] 

Where the trials were originally from, meaning the samples in the continuous data is found in 

data.sampleinfo. It has a simple two column format of a start and end sample number for every trial (on 

every row).   

 data.samplelinfo: [2x25 double] % one row might be: [173450 174450]  

Finally, you might have extra information per trial about the specific condition that the trial belongs to, 

the response time, etc. How to include this information yourself will be explored next but for now it will 

suffice to say you can might find it in an extra field called trialinfo where every row contains some extra 

info for every trial. For example: 

 data.trialinfo: [3x25 double]  % one row might be: [100 3.4556 1]  
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Trial bookkeeping, part I 
At this point you might ask: “how does FieldTrip know which trials correspond to which condition?” 

Unlike perhaps other analysis packages, it doesn’t. You will have to do your own bookkeeping on that. 

How you want to do that, and indeed if you want to do that, will depend on how you want to undertake 

your analysis. Let’s take the simplest case of comparing the averages (of whatever) of two conditions. In 

FieldTrip this can be done in two ways: 

1. Doing the whole analysis separately for each condition (starting with preprocessing).  

a. Then average over conditions 

b. Compare the averages 

2. Doing the whole analysis over all the trials at once. 

a. Split the trials belonging to each condition.  

b. Average over conditions 

c. Compare the averages 

The main difference between the two approaches considering trial bookkeeping is that in the first case 

you do not need any trial bookkeeping – you simple only read and process the data you need separately 

for every conditions.  

The other option is to postpone the separation of trials into conditions. This would make sense in any 

trial-by-trial based analysis [sic] or just purely for the sake of keeping stuff together.  

We’ll start with the first step. The second is an extension of that one. 
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Defining trials 
Assuming we have marked our data file with codes representing conditions, we want to know how to 

segment the data relative to these markers. Note that although you might only be interested in the first 

second after the stimulus code, you might want to consider including a baseline period. Of course there 

are many other considerations. For the moment we will assume all trials to be of equal length and not to 

be overlapping.  

So first of all we need to specify what marker codes belong to what condition. We do that by creating 

two arrays of codes, one for every condition, e.g.: 

 markersA = [1:5 11];     % 1 2 3 4 5 11 
 markersB = [6:10 12];    % 6 7 8 9 10 12 
 
Then there is the timing we need to define. Let’s already put it in a cfg structure (more about the cfg 

structure later): 

 cfg = [];     % create an empty variable called cfg 
 cfg.trialdef.prestim = 0.5;   % in seconds 
 cfg.trialdef.poststim = 2;  % in seconds 
 
In addition, we need to specify where those markers are located. This will be different for every system. 

 cfg.trialdef.eventtype = ‘input’;  % use ‘?’ to get a list of the available types 

Let’s now also add to the cfg the events as we specified them a moment before and - as we decided 

previously - one condition at a time: 

 cfg.trialdef.eventvalue = markersA; 

Now, the last thing we need to do is to point to the datafile where to read the event markers from. 

 cfg.dataset = ‘subject01.eeg’; 

We can now call our first FieldTrip function: 

 cfg = ft_definetrial(cfg); 

Notice that what is happening here is that a cfg structure is fed into ft_definetrial, which returns it again 

but with an added field called cfg.trl. This is a simple list of three columns where every row describes a 

separate trial start, end and offset (interval before the event) in sample numbers, relative to the event 

values we specified: 

 cfg.trl: [50x3 double] 

This is all we need to load the appropriate data using ft_preprocessing, using the different stimulus 

events values to load every condition separately. You can jump ahead to preprocessing or stay for the 
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next part where we will look at how to adapt our trial definition so we can still do some trial 

bookkeeping later on. 

Trial bookkeeping, Part II 
What makes ft_definetrial very flexible is that it uses a separate trial function you can customize to fit 

your specific requirements. 

 

 

 

 

 

 

 

 

 

 

 

Within trialfun the trl is made according to specifications given through the cfg, as well as anything else 

you want to add. For instance, you might want to make trials dependent not only on the stimulus 

marker, but also on a correct response marker. This would be the place to do that. Also, sometimes you 

might be left with a rather awkward way of coding your conditions. This would also be the place to 

recode your trials and create a less ambiguous system. 

For the purpose of trial bookkeeping we only need to append one extra column (or more) to the 

standard three columns of the trl. Here we write information about the stimulus code, response time, 

condition numbers, etc. Next in ft_preprocessing (explained next) these extra columns will be put in an 

extra field of the data structure (trialinfo). This will enable us at any moment during our analysis to 

select trials based upon any arbitrary reason.   
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trials the same length. Be careful 

though as you might end up in a 

statistical snake-pit later.  
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Preprocessing 
Preprocessing (ft_preprocessing.m) was the second main function implemented during FieldTrip’s 

development. As the name suggests it’s takes care of the first steps in processing your data. This means: 

1. Loading the data into a FieldTrip data structure 

2. Rereferencing 

3. Cutting up your data into trials (if a trl is specified) 

4. Baseline correction 

5. Detrend 

6. Filtering (high, low, band pass and notch) 

Besides loading the data all the other functionalities can be done at any later stage. They are not set by 

default. We’ll go through them in their own time and use ft_preprocessing only for the first two steps.  

If we don’t specify the trial definition we made previously, ft_preprocessing would load all data and put 

them into a [channels x time] array of a single trial (e.g. in data.trial{1}). To save memory it is sometimes 

preferred to load only the data that is actually used, and you’ll need to segment the data into trials 

sooner or later anyway. To do so we supply ft_preprocessing with the trl we made previously. You might 

have everything you need already specified within the cfg, but just to be sure we’ll repeat it here: 

cfg.trl = trl;     % saved somewhere previously 
cfg.dataset = ‘exampledata.eeg’;   % data file, you might also need to add the path to it  

 trialdata = ft_preprocessing(cfg); % call preprocessing, putting the output in ‘trialdata’ 

What we end up with now is a datastructure called trialdata. See the previous ‘trialstructure’ on how 

the data it is organized. Please note here that all the info that was contained in the trl is now put in two 

different fields of the datastructure. The first two colums of the trl that described the start and end 

samples in the original data are now found in trialdata.sampleinfo. All the extra information for our trial 

bookkeeping that was put in extra columns of the trl are now found in trialdata.trialinfo.   
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Artifact rejection 

Introduction  
Finding an appropriate approach to artifact rejection is not as simple as one might think. Every system, 

every experiment and even every subject will vary in number, magnitude and type of artifacts. Also, 

some researchers might be okay with just rejecting trials with any artifacts, some only if eye blinks come 

before a stimulus while again others might want to correct for eye and movement artifacts by using an 

ICA approach. Furthermore, some artifacts, like spikes, might be easy to detect because of their signal 

properties, while others might be much harder to detect. For these reasons I believe one cannot do 

without visual inspection of the data. Only in very rare cases of very typical and well described artifacts, 

such as jumps from a specific MEG system, we think a fully automatic artifact rejection is warranted. 

Besides all those rational considerations, manually going through your data early will also give you a 

certain ‘feeling’ of what your data is like.  

Of course, in the end you would like to have certain standardized approach to your artifact rejection 

that will give you the best results possible. I don’t know if something like that exists and rather think 

everyone has his or her own personal preferences. Although seemingly rather time-consuming, I myself 

ended up with the following procedure. You need not follow it, it’s just a suggestion. It does give me the 

possibility of explaining some of the following steps in more detail. In particular it will explain a use of 

ft_databrowser, a recently added function which is not yet documented elsewhere. 

1. Visually inspect the dataset and mark those segments that contain obvious movements, 

(system) spikes or muscle artifacts, leaving in all but the most extreme eye artifacts.  

2. Reject the trials that contain artifacts. 

3. Decompose the data using ICA. Note that ICA can give very unreliable results when the data 

contains a lot of (correlated) noise. The cleaner the data is already, the better the ICA results. 

4. Find components clearly corresponding to eye blinks and saccades. 

5. Recompose data without those components. 

6. Go through data again visually and manually selects segments that still show any remaining 

artifacts, being from eye blinks, movements, etc.  

I know this looks like a lot of work. However, it might pay off in the end when you are certain your data 

is clean and you do not have to go back to satisfy that slightly uneasy feeling that your results might ‘all 

be artifacts’. Of course they might still be, but at least you did everything you could. 
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Visual data inspection 
As most FieldTrip functions ft_databrowser needs a configuration structure and a data structure as 

input. First of all we can specify how to visualize the data: 

 

 

 

 

 

We can also specify if we want to look at the data trial-by-trial, or if we want to treat it as continuous 

data. In the latter case we need to specify how large the time segments on display need to be in 

cfg.blocksize (in seconds): 

 

 

 

 

  

If we now call cfg = ft_databrowser(cfg,data), we are able to scroll through the data and select those 

segments containing muscle artifacts and the like. In the case you want to remove eye artifacts with ICA 

you can leave those in. If we now exit the databrowser by pressing ‘q’ our cfg is returned with an extra 

field containing a list of start and end samples for every data segment we selected: 

cfg.artfctdef.visual.artifact: [2xnArtifacts double] 

Note that ft_databrowser does not do anything with your data. To remove the trials that overlap with 

the segments we selected (and which are now in our cfg) and to save the remaining data in a new data 

structure we still need to use the function ft_rejectartifact:   

 cfg.artfctdef.reject  = ‘complete’; 
cleandata = ft_rejectartifact(cfg,data); 
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cfg.continuous = ‘yes’; 
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mark by adding to cfg.selectvisual. You can also 

use the selection directly for something else by 

supplying an eval argument in cfg.selectmode. 

Use this to make topoplots or even movies! 
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Using ICA for eye artifact removal 
Severe contamination of EEG/MEG activity by eye movements, blinks, muscle, heart and line noise is a 

serious problem for its interpretation and analysis. Many methods exist to remove eye movement and 

blink artifacts. Simply rejecting contaminated epochs results in a considerable loss of collected 

information. Often regression in the time or frequency domain is performed on simultaneous electro-

oculographic (EOG) recordings to derive parameters characterizing the appearance and spread of EOG 

artifacts in the other channels. However, EOG records also contain brain signals, so regressing out EOG 

activity inevitably involves subtracting a portion of the relevant brain-signal from each recording as well. 

Also, since many noise sources, include muscle noise, electrode noise and line noise, have no clear 

reference channels, regression methods cannot be used to removed them. ICA can effectively detect, 

separate and remove activity in EEG/MEG records from a wide variety of artifactual sources, with results 

comparing favorably to those obtained using regression- or PCA-based methods 

(http://sccn.ucsd.edu/~scott/tutorial/). 

First we need to decompose the data into independent components. The only thing we have to be sure 

of is that we only use the actual EEG or MEG channels and don’t use reference sensors or EOG: 

cfg = []; 
cfg.channel = ‘EEG’; 
ic_data = ft_componentanalysis(cfg,cleandata); 

 

The ICA will return as many components as you put channels in. Each component consists of a 

component timecourse for every trial (ic_data.trial) together with a single topography (ic_data.topo): 

 

 

 

 

 

When ft_componentanalysis is done (it could take a while) we have to find those components we want 

to substract from our data. We’ll use ft_databrowser for this again, only looking at ten ‘channels’ 

(components) at a time: 

cfg = []; 
cfg.viewmode = ‘component’; 
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Components are automatically sorted based upon on the sum of the weighting factors, commonly 

resulting in the most interesting components appearing on top. In the example below the first 

component is clearly an eye-blink because the appearance of an eye-blink in the time-course and the 

frontal topography. The second component is most probably related to eye movements for similar 

reasons. The fourth component is picking up the heartbeat. There is no reason to assume the third 

component to be artifactual.  

 

 

 

 

 

 

 

 

To recompose the data without components 1, 2 and 4 use ft_rejectcomponents: 

cfg = []; 
cfg.component = [1 2 4]; 
data_iccleaned = ft_rejectcomponent(cfg, ic_data); 

 
 
Our data is quite clean now but I would recommend a last manual inspection on a trial by trial basis. It 

might happen that you missed some artifacts in the first run as it was only a rough scan for the benefit 

of the ICA. It might also very well be that the ICA failed for some reason, or that you skipped artifacts in 

the first run that you thought were eye-blinks but which were not removed in the end. Although you 

know the drill by now, here is the code: 

 
cfg = []; 
cfg.viewmode = ‘horizontal’; 
cfg.continuous = ‘no’; 
ft_databrowser(cfg,data_iccleaned); 
 
cfg.artfctdef.remove = ‘complete’; 
data_manual = ft_rejectartifact(cfg,data_iccleaned); 
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Filtering 
Filtering your data will also get rid of some common artifacts, especially line noise - the 50 Hz ‘humming’ 

of the electric power supply and instruments connected to it. To clean up your data close around 50 Hz, 

and its harmonics at 100 and 150 Hz, you can use a band-stop filter. Add the following to your cfg before 

you run ft_preprocessing the first time (on page 9): 

cfg.bsfilter = ‘yes’; 
cfg.bsfreq = [49 51; 99 100; 149 151]; 
… 
trialdata = ft_preprocessing(cfg); 

 

If you are doing an event-related-potential (ERP) study you might not even be interested in higher 

frequencies. Indeed, doing a low-pass filter on your data will make your ERP’s look much smoother. By 

adding the following before running preprocessing you will be left with data only composed of 

frequencies below that of the specified cut-off frequency. Note, however, that you are throwing away a 

lot of data. These higher frequencies might be very useful to detect for instance movement artifacts or 

to compute accurate independent components for eye-blink correction. Using the band-pass filter in this 

way therefore is better done after you did all your other previous methods of artifact rejection.  

This brings us to a slightly different use of ft_preprocessing where we supply it data instead of letting it 

read from disk. For instance, continuing with the data from the previous page, we could do the 

following: 

 cfg = []; 
 cfg.lpfilter = ‘yes’; 
 cfg.lpfreq = [35]; 
 data_lp = ft_preprocessing(cfg,data_manual); 
 

 

 

  

Want to know exactly how digital filters work? 

Want to intuitively grasp the FFT? You might 

enjoy reading the great “The Scientist and 

Engineers’s Guide to Digital Signal Processing”, 

free on www.dspguide.com 
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Frequency analysis 

Calculating spectral estimates 
Ft_freqanalysis supports many approaches to spectral calculations. You might be going back and forth 

between using different methods, what, when and how many tapers to use, choosing different time-

frequency windows, etc. We’ll discuss two main approaches: doing a FFT on the whole trial at once and 

using a sliding time-window. After that the most common features will be explained one by one. At 

worst you will have heard about them once more again. At best you’ll have a little bit more grip and 

overview on their use.  

Let’s begin with the catch: every signal in the time domain can be described in the frequency domain and 

vice-versa - although doing so does not always make much sense.  

The translation from one domain to the other is done using a variation of the (inverse) Fourier 

transform. FieldTrip combines all its calculations from the time to the frequency domain in the function 

ft_freqanalysis. It will result in a data structure that has to be able to contain not just channels x time for 

every trial, but now also has to add frequency as a dimension: 
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Power per trial 
In the simplest case you are interested in the power of certain frequencies (frequencies of interest: 
cfg.foi)  of the whole trial. This is done by using ‘mtmfft’ as the method: 
 
 cfg = []; 
 cfg.method = ‘mtmfft’; 

cfg.output = ‘pow’; 
cfg.foi = [1:30];  

 

Note that in cfg.foi we are now specifying a list of frequencies with steps of 1 Hz. It is also possible to 

specify a range (cfg.foilim = [1 30];) which will output an average power over these frequencies, or to 

take different size “steps” (cfg.foi = [1:2:30];). 

Power changes over time 
The most used method for frequency analysis in FieldTrip besides 'mtmfft' is 'mtmconvol'. There are two 

main differences between the two. First, ‘mtmfft’ gives the average frequency-content of your trial, 

whereas 'mtmconvol' gives the time-frequency representation of your trial, i.e. how the frequency 

content of your trial changes over time. Second, they differ in their implementation. Below a short 

description: 

 

Mtmfft  

‘Mtmfft’ consists of 2 main steps. Step 1: Your raw data is windowed/tapered by a taper you selected in 

cfg.taper (e.g. hanning, dpss, etc.). This is important for various reasons explained in the next section. 

Step 2: the Fast-Fourier-Fransform (FFT) of your data is taken, and parts of this are selected as output. 

 

Mtmconvol  

‘Mtmconvol’ works a little differently. One of several methods to get a time-frequency representation of 

your data is by using wavelet-convolution, where a wavelet is 'sliding' over your raw data, at each time-

point taking the average of a element-wise multiplication of all the data that 'lies under' your wavelet. 

‘Mtmconvol’ does exactly this, but then by multiplication in the frequency domain (which is much faster 

than convolution in the time-domain). Step 1: wavelets are created, the length determined by 

‘cfg.tf_timwin’, with 1 wavelet per frequency. Step 2: each wavelet is windowed/tapered similarly as 

step 1 in ‘mtmfft’. Step 3: the Fast-Fourier-Transform is taken of both your raw data and your wavelet 

and multiplied with each other (for each frequency). Step 4: the inverse Fourier-transform is taken, and 

parts of this are selected as output.  
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Sliding time windows 
If you are interested in the development of the power (or other frequency information beyond the 

scope of this document) over time, you need to cut up the time course into pieces and calculate the 

power for every piece separately: 

 

  

 

 

 

However, because of the straight edges of the time window spectral leakage will occur (something you 

do not want). It is therefore recommended make the edges of the time window taper off to zero by for 

instance multiplying the time course with an inverted cosine function. This is called a Hanning window: 

 

 

 

 

 

 

As you can see using such a taper will make you lose data between the time windows. This is 

compensated by using an overlapping time window, providing the average power of the time-window 

centered at multiple time-points. Note that although you sample in much smaller steps, the value for 

every window is still calculated for the whole time window: 
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One consideration in choosing the width of your time-window is the wavelength of the frequency you 

want to calculate. As we view an oscillation as consisting of several cycles, this needs to be reflected in 

the time-window. Also, you need several cycles captured in your time-window to have a relative reliable 

estimate of its power during that time. This means that for a signal of 2 Hz the time window should be 

several times 0.5 seconds (T = 1/f). For higher frequencies this can be much shorter, 30Hz giving you a 

period of about 33 milliseconds. To not make concessions for one or the other extreme you can make 

your time-windows dependent on the frequency by making it a multiple of its period. It is recommended 

to not use less than 3 cycles. Remember, the way you define your window biases your results towards 

that particular view. If you are searching for long-lasting oscillations and therefore use time-windows of 

e.g. 10 cycles, your results will reflect that portion of your data most strongly. If, instead, you use a 

window of 1 cycle, do not expect to see (although you might) oscillations evolving over time, as you are 

biasing your results against it.  

  

 

 

 

 

 

To summarize let’s look at the different parameters that have to be set for doing a frequency analysis 

with a sliding, frequency dependant, time window, using a Hanning taper and then call ft_freqanalysis 

on one data set: 

cfg.trials   = trialsA; 
cfg.output   = ‘pow’; 
cfg.method   = ‘mtmconvol’; 
cfg.taper   = ‘hanning’; 
cfg.foi    = 1:30; 
cfg.t_ftimwin   = 4 ./ cfg.foi; 
cfg.toi    = -0.5:0.05:2;  
freq    = ft_freqanalysis(cfg, data_lp); 
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Selecting trials using .trialinfo 
By default ft_freqanalysis (and as we will see, also ft_timelockanalysis) will not retain information on 

separate trials but will output the average frequency information (power in this case) over all trials.  

Also for reasons of memory and speed this might be a good moment to separate your trials into 

conditions and do a frequency analysis for every condition separately. 

You can select the trials on which to do ft_freqanalysis or ft_timelockanalysis by specifying trial indexes 

in cfg.trials. The trial index is nothing more than a number pointing to the n-th trial in the data structure. 

Since we have all the information about the conditions that the trials belong to stored in the .trialinfo 

field, we can search through it to make such a list. Remember we already made a list of trial codes 

belonging to our two conditions (markersA & markersB). We’ll just search through our .trialinfo looking 

for those trials that match those codes: 

trialsA = [];     %make an empty array 
 
for i = 1 : size(markersA,2)  % start a loop from 1 to the number of items in our…  

% markersA array 
index = find(data_manual.trialinfo == markersA(i));  % find the index in data_manual.trialinfo that… 

% corresponds with the i-th item in the markersA list. 
% if there is not, it will remain empty 

trialsA = [trialsA index]    % add the index to the trialA array 
 
end      % end of loop 

 

We can now add the following line to the cfg: 

cfg.trials = trialsA; 

However, if you want to save trials separately you can specify the following option: 

 cfg.keeptrials = ‘yes’;   %default = ‘no’ 
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ft_freqanalysis output  
 
We might go further into the output of ft_freqanalysis in a future release of this document but for now 

it suffices to say it gives a datastructure as output similar as the input structure but now with the field 

.powspctrm instead of .trial or .avg.trial.  



Fieldtrip for Dummies Stephen Whitmarsh 21 | P a g e  
 

Statistics 

FieldTrip distinguishes itself perhaps most in its flexibility in statistical approaches. In a similar way as 

with ft_definetrial and ft_freqanalysis, ft_timelockedstatistics and ft_freqstatistics call auxiliary functions 

to calculate the different statistics. Don’t be afraid though – most users won’t need to go nitty-gritty and 

go through those functions. As an end user needs to understand most of all is: 

 The difference between descriptive and inferential statistic. 

 The common structure for the input to - and output from - ft_freqstatistics. 

Descriptive & inferential statistic 

The difference between descriptive and inferential statistic is often implicit in neuroimaging analysis 

packages, or in research articles for that matter. It really pays off to consider them separately here and 

to entertain the many possibilities of combining descriptive statistics with statistical methods. It is 

paramount in understanding the philosophy and appreciating the full statistical potential of FieldTrip.  

So what do we mean with descriptive statistic? It’s the single value you end up with after reducing your 

data(set) and representing an aspect of its distribution which you would want to use for statistical 

comparison. Think for instance about “average alpha power over trials”, “variance of the P300 

amplitude” or “the latency of maximal mu-rhythm suppression”. You might calculate a descriptive 

statistic for every subject, e.g. the difference between conditions (which you want to compare over 

subjects). Conversely, you might want to use one descriptive for every trial (which you will compare 

within a subject). A descriptive statistic is not limited to averages of power or amplitude but can be any 

output of a statistical procedure itself, such as a Z-value, t-value, variance, mean-difference or Beta-

value.  

The inferential statistic is what you get when you test your descriptive statistics against the null-

hypothesis, e.g. is your p-value. Again, there are many ways to do your null-hypothesis testing, e.g. using 

a (paired) t-test or Montecarlo approach. 
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Input – output structure of ft_freqstatistics 

Also when it comes to your statistical analysis FieldTrip doesn’t let you down: The structure of its output 

is consistent with the datastructure of its input. We will revisit the following figure a couple of times, but 

for now please notice notice:  

1) Unless you specify otherwise through averaging on a certain dimension, the structure of the 

output will have the same structure as the input 

2) Those values of the output – the descriptive statistics, the inferential statistics and the decisions 

(to reject your null-hypothesis), are dependent on cfg.statistics, cfg.method and cfg.alpha, 

respectively. 

3) That we need to specify a design matrix – our next topic  
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Input: data and your designmatrix  

It should be obvious that besides feeding data we need to specify how the separate data entries should 

be treated – which belong to the same condition for instance. What is common to all designs is that 

data entries are always assumed to be in a row. In the simplest case we only need to specify a code 

corresponding to the independent variable for every data entry. Note the use of the parameters ivar and 

uvar. They denote nothing more than the rownumber in the designmatrix to find either your 

independent variables (ivar) or units of observation (uvar).  

Non-paired comparison 
This could be simply the condition number as we have in the case of a (non-paired) comparison of two 

series of data entries. Note that this is the same regardless if we are dealing with a within-subject (e.g. 

condition A versus B) or a between-subject design (e.g. group A versus B, session A versus B): 
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cfg.ivar  = 1; 
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Paired comparison 
Besides a row coding for the independent variable such as your experimental condition (the first row, 

therefore: cfg.ivar = 1;), we can code for every dependant variable, or unit of observation in the second 

row (uvar = 2); The units of observation often are subjects (in a certain group) or trials (of a certain 

condition), for instance. This allows us to do a paired comparison. The example below is just an example, 

there is no necessity to have such an organized design, as long as you make sure every n-th column 

corresponds to the appropriate n-th data entry.  
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cfg.design = [ ones(1,5)  ones(1,5)*2; 1:5 1:5 ]; 
cfg.ivar  = 1;  
cfg.uvar = 2; 
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Correlation 
You might not want to test groups but rather calculate a correlation with any other series of values. 

These could be reaction times, a subject score on a questionnaire or even power in another frequency. 

Your design then will only have to specify those in a single row. For the example below we’ll just make 

an imaginary [sic] array of values. 
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Averaging over time/frequencies/sensors 
As you are well aware, however, the power of our statistical test (not to be confused with test statistic) 
is vulnerable to the multiple comparison problem, a problem that is greatly exacerbated with the 
multidimensional nature of psychophysiological data. One way of dealing with this problem is simply to 
average over (parts of) a dimension. Doing this now, instead of earlier during ft_preprocessing, 
ft_freqanalysis or ft_timelockanalysis gives us all the flexibility to explore different windows on which to 
calculate our test statistic (“average power of…”, or “average amplitude of…”). Remember how we 
showed in the previous page to specify a time-frequency window or select channels. We can simply 
average over one of these dimensions as follows: 
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Descriptive Statistics 

 actvsblIT 

 depsamplesF 

 depsamplesT 

 depsamplesregrT 

 diff 

 diff_itc 

 indepsamplesF 

 indepsamplesT 

 indepsamplesZcoh 

 mean 

 pooledT 

 roc 

Statistical methods 

Once the design matrix is specified and the test statistic is defined we only need to decide how we are 

going to test our hypothesis. Of course the statistical methods one will use are somewhat dependent on 

the design matrix you specified but let’s just summarize them all here: 

 Montecarlo 

 Analytic 

 Stats 

 Crossvalidate 

Calling ft_freqanalysis 
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Monte Carlo statistics explained 
To be included in the next release. 

Cluster statistics 
To be included in the next release. 
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Epilogue 

I hope this document has been helpful explaining some data analysis / FieldTrip issues, perhaps at least 

in a different way. We now continue with source analysis in the form of a construction manual for 

Beamformer (DICS and LCMV) as implemented in FieldTrip. In a step-by-step way you will be taken 

through all intermediate operations in an as visual as possible way. All you will see it is greatly inspired 

by the IKEA manuals and as such can be printed out. Just crop 4x4 pages on a single A4, tape them 

together and fold! Good luck and have fun. 

Stephen Whitmarsh 
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construction manual 



Fieldtrip for Dummies Stephen Whitmarsh 31 | P a g e  
 

WIKI 

construction manual 
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Trust your data 

 Rejected artifacts 

 Third-order gradient  

 Filtered (notch) 

 Checked data on sensor level 

 Statistics on sensor level 

 Tried the tutorials 

 
 http://fieldtrip.fcdonders.nl/tutorial/beamformer 

construction manual 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 

1) Where is the head with respect to the sensors? 

a. Using headcoils to localize head in system 

b. CTF system automatically tracks and outputs this info in data 

(gradiometer positions) 

freq.grad.pnt  = [Nx3] 
freq.grad.ori  = [Nx3] 
freq.grad.label  = {Nx1} 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 

1) Where is the head with respect to the sensors? 

2) What is the shape of the brainvolume in which current is flowing? 

a. Alignment MRI with CTF headspace using fiducials 

 https://intranet.donders.ru.nl/index.php?id=mri2ctf  (for in-house purposes) 

 http://fieldtrip.fcdonders.nl/example/read_neuromag_mri_and_create_single-

subject_grids_in_individual_head_space_that_are_all_aligned_in_mni_space 

x (cm) 

z (cm) 

y (cm) 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 

1) Where is the head with respect to the sensors? 

2) What is the shape of the brainvolume in which current is flowing? 

a. Alignment MRI with CTF headspace using fiducials 

b. Segmenting MRI to determine brain morphology 

mri = read_mri(mrifile); 
 
cfg = []; 
cfg.downsample = 2; 
cfg.coordinates = 'ctf'; 
seg = volumesegment(cfg, mri); 

 http://fieldtrip.fcdonders.nl/example/read_neuromag_mri_and_create_single-

subject_grids_in_individual_head_space_that_are_all_aligned_in_mni_space 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 

1) Where is the head with respect to the sensors? 

2) What is the shape of the volume in which current is flowing 

3) How does the current affect the activity at the sensor level? 

 

cfg = []; 
vol = prepare_singleshell(cfg, seg); 

 http://fieldtrip.fcdonders.nl/example/make_leadfields_using_different_headmodels 

Conduction model 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 

1) Where is the head with respect to the sensors? 

2) What is the shape of the volume in which current is flowing? 

3) How does the current affect the activity at the sensor level? 

4) Which locations do you want to scan (grid)? 

grid.xgrid = -20:0.8:20; 
grid.ygrid = -20:0.8:20; 
grid.zgrid = -10:0.8:20;  
cfg = []; 
cfg.tightgrid = 'yes'; 
cfg.inwardshift = -1.5; 
grid = prepare_dipole_grid(cfg, template_hdm, template_grad); 

Outward shift 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 

1) Where is the head with respect to the sensors? 

2) What is the shape of the volume in which current is flowing? 

3) How does the current affect the sensor level? 

4) Which locations do you want to scan (grid)? 

5) Subjects differ in morphology 
 

 
template grid 

Subject 1 Subject 2 Subject 3 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 

1) Where is the head with respect to the sensors? 

2) What is the shape of the volume in which current is flowing? 

3) How does the current affect the sensor level? 

4) Which locations do you want to scan (grid)? 

5) Subjects differ in morphology  transform MNI template to individual grid 

      norm = volumenormalise(cfg,mri); 
      grid          = []; 
      grid.pos      = warp_apply(inv(norm.cfg.final), template_grid.pos, 'homogenous')/10; 
      grid.inside   = template_grid.inside; 
      grid.outside  = template_grid.outside; 

Prepare template 

In
verse n

o
rm

alisatio
n

 

 example/create_single-subject_grids_in_individual_head_space_that_are_all_aligned_in_mni_space 

MNI template grid 

single subject CTF grid 

 morphological differences 

 mm  cm 

 fiducials  ventricles 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 

volumesegment 

Segment., model 
& prepare grid 

template 
 

(inverse) 
warp_apply 

 

prepare_grid 
 

CTF 
 

volume_realign 
 

cfg.grad 
 

cfg.vol 
 

cfg.grid 
 

Prepare_singleshell 
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Forward model 

Q: How is a source ‘seen’ by the sensor-array? 

1) Where is the head with respect to the sensors? 

2) What is the shape of the volume in which current is flowing? 

3) How does the current affect the sensor level? 

4) Which locations do you want to scan (grid)? 

5) Subjects differ in morphology  transform MNI template to individual grid 

6) Calculate forward model: the leadfield(h) 

cfg.grad  = grad; 

cfg.vol  = vol; 

cfg.grid  = grid; 

grid_lf  = prepare_leadfield(cfg); 

 

 http://fieldtrip.fcdonders.nl/example/make_leadfields_using_different_headmodels 

Sr
1 

h1 

h2 

h3 

h4 

x1(t) 

x2(t) 

x3(t) 

x4(t) 

Sr
n 



Fieldtrip for Dummies Stephen Whitmarsh 44 | P a g e  
 

Inverse solution (Beamformer) 

Q: What is the activity of a source S, at a location r, given the data x? 

1) We now know how to get from source to data: x = h (leadfield) * S  
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Inverse solution (Beamformer) 

Q: What is the activity of a source S, at a location r, given the data x? 

1) We now know how to get from source to data: x = h (leadfield) * S  

2) We want to go from data to source: S = wT * x 

a. Solution is not unique (linear combination of sensor-weights) 

b. Beamformer calculates the spatial filter (W) by extracting the true 

signal at the location while minimizing the variance of the filter 

output. 
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Inverse solution (Beamformer) 

Q: What is the activity of a source S, at a location r, given the data x? 

1) We now know how to get from source to data: x = h (leadfield) * S  

2) We want to go from data to source: S = wT * x 

3) For this we need to extract out of the data the cross-spectral density 

(frequency domain) or covariance (time domain) 
 

cfg.output  = 'powandcsd'; 
cfg.foi  = 40; 
cfg.t_ftimwin = 0.200;  
cfg.toi  = 0.05:1.5;         
freq_condA       = freqanalysis(cfg, data); 
 

 http://fieldtrip.fcdonders.nl/tutorial/timefrequencyanalysis 
 http://fieldtrip.fcdonders.nl/tutorial/eventrelatedaveraging 
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Inverse solution (Beamformer) 

Q: What is the activity of a source S, at a location r, given the data x? 

1) We now know how to get from source to data: x = h * S  

2) We want to go from data to source: S = wT * x 

3) For this we need to extract out of the data the  cross-spectral density 

(frequency domain) or covariance (time domain) 

4) Then we have all the ingredients (CSD and leadfield) to finally calculate the 

spatial filter 
 

freqanalysis 
 

cfg.grid = grid; 
cfg.method = ‘dics’; 
source = sourceanalysis(cfg,freq) 
 

Data 

spatial filter 
 

CSD / 

covariance 

channel 
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leadfield 

 http://fieldtrip.fcdonders.nl/example/lcmv-beamformer 
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Statistics 

Q: How can I compare different datasets on the source level? 

1) The solution of the beamformer is a unique spatial filter 

a. For a specific subject (morphology) 

b. For a specific dataset (current-source density or covariance) 

multiple sections of data per subject 

(e.g. conditions) 

one leadfield per subject 

CSD / covariance 

CSD / covariance 

CSD / covariance 
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Statistics 

Q: How can I compare different datasets on the source level? 

1) The solution of the beamformer is a unique spatial filter 

2) Although you can use the same data to make the filter and project to source 

level 

a. often a common filter is calculated across conditions (using the same 

dataset) 

b. only the output of different datasets through the same filter are 

compared statistically  

Source level 

 

spatial filter 
 

 http://fieldtrip.fcdonders.nl/example/common_filters_in_beamforming 
 http://fieldtrip.fcdonders.nl/example/source_statistics 

Common filter 

Common data Dataset B 

So
u

rce p
ro

jectio
n

 

Dataset A 
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Statistics 

Q: How can I compare different datasets on the source level? 

1) The solution of the beamformer is a unique spatial filter 

2) Although you can use the same data to make the filter and project to source 

level 

a. often a common filter is calculated across conditions (using the same 

dataset) 

b. only the output of different datasets through the same filter are 

compared statistically 

3) It is now easy to project your (statistical) data on a MNI brain or cortical 

surface (outside the scope of this document, for now) 

  

 
 http://fieldtrip.fcdonders.nl/tutorial/beamformer  
 http://fieldtrip.fcdonders.nl/tutorial/plotting 
 http://fieldtrip.fcdonders.nl/tutorial/analysis_protocols 
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•   

volumesegment 

Segment., model 
& prepare grid 

template 
 

(inverse) 
warp_apply 

 

prepare_grid 
 

CTF 
 

volume_realign 
 

cfg.grad 
 

cfg.vol 
 

cfg.grid 
 

Prepare_singleshell 
 

CSD / covariance 

Data 

freqanalysis 
 

 

preprocess, etc. 
 

sourceanalysis 
 

Prepare_leadfield 
 

cfg.grid 
 

freq.powspctrm 
freq.crsspctrm 

construction manual 
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